
www.manaraa.com

Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Fall 2015 

Hyper-heuristics for the automated design of black-box search Hyper-heuristics for the automated design of black-box search 

algorithms algorithms 

Matthew Allen Martin 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Computer Sciences Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Martin, Matthew Allen, "Hyper-heuristics for the automated design of black-box search algorithms" 
(2015). Masters Theses. 7473. 
https://scholarsmine.mst.edu/masters_theses/7473 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7473&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7473?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7473&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


www.manaraa.com

HYPER-HEURISTICS FOR THE AUTOMATED DESIGN OF BLACK-BOX

SEARCH ALGORITHMS

by

MATTHEW ALLEN MARTIN

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2015

Approved by

Dr. Daniel Tauritz, Advisor

Dr. Zhaozheng Yin

Dr. Samuel Mulder



www.manaraa.com

This work is licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Com-

mons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Published conference papers retain their original copyrights.

Copyright 2015

MATTHEW ALLEN MARTIN

All Rights Reserved

http://creativecommons.org/licenses/by-nc-sa/3.0/


www.manaraa.com

iii

PUBLICATION THESIS OPTION

This thesis has been prepared in the form of three papers formatted to uni-

versity standards.

Paper 1. Pages 4–29 have been published as Evolving Black-Box Search Algorithms Em-

ploying Genetic Programming, Genetic and Evolutionary Computation Confer-

ence 2013 with Daniel Tauritz.

Paper 2. Pages 30–57 have been published as A Problem Configuration Study of the Ro-

bustness of a Black-Box Search Algorithm Hyper-Heuristic, Genetic and Evolu-

tionary Computation Conference 2014 with Daniel Tauritz.

Paper 3. Pages 58–83 have been published as Hyper-Heuristics: A Study On Increasing

Primitive-Space, Genetic and Evolutionary Computation Conference 2015 with

Daniel Tauritz.

http://dx.doi.org/10.1145/2464576.2482728
http://dx.doi.org/10.1145/2464576.2482728
http://dx.doi.org/10.1145/2598394.2609872
http://dx.doi.org/10.1145/2598394.2609872
http://dx.doi.org/10.1145/TODO:
http://dx.doi.org/10.1145/TODO:


www.manaraa.com

iv

ABSTRACT

Within the field of Black-Box Search Algorithms (BBSAs), there is a focus on

improving algorithm performance over increasingly diversified problem classes. How-

ever, these general purpose problem solvers have no guarantee to perform well on

an arbitrary problem class that a practitioner needs to solve. The problem classes

that the research in this thesis most applies to are difficult problems that are go-

ing to be solved multiple times. BBSAs tailored to one of these problem class can

be expected to significantly outperform the more general purpose problem solvers,

including canonical Evolutionary Algorithms (EAs). The first paper in this thesis

explores a novel method in which these BBSAs can be created through the use of

hyper-heuristics.

Hyper-heuristics have the tendency to over-specialize on the problem config-

uration that it is given rather than generalizing to the problem class. The evolved

BBSA should be robust to changes in problem configuration. The second paper in

this thesis presents a multi-sample approach geared towards increasing the robustness

of the resulting BBSAs.

As with other CI techniques, such as Genetic Programming, hyper-heuristics

are affected by the size of the search space. If the hyper-heuristic has too much

genetic material, it could cause the search space to be too large to effectively traverse.

However if the hyper-heuristic has too little genetic material, it may not be capable of

creating a high quality BBSA. The third paper in this thesis explores the scalability

of hyper-heuristics as the amount of genetic material is increased. Additionally,

this paper explores the impact that the nature of the added primitives have on the

performance of the hyper-heuristic. These papers show that hyper-heuristics can be

used to evolve BBSAs that perform well on a problem of indiscriminate type.



www.manaraa.com

v

ACKNOWLEDGMENTS

There are many people who have greatly helped me along my path to com-

pleting this thesis to which I owe my gratitude. First and foremost, I would like to

thank my adviser Dr. Daniel Tauritz. While taking his Introduction to Evolutionary

Computation course, a research opportunity opened up and a fellow student recom-

mended me for the position. After discussion with Dr. Tauritz, he gave me my first

position as an undergraduate researcher. Over the years he has offered guidance in

my academic and professional pursuits. He has pushed me to my full potential in

both my coursework and my research. His encouragement over the years will continue

to motivate me to exceed expectations in every aspect of my life.

I would also like to thank Dr. Samuel Mulder for giving extremly valuable

feedback on all of my publications. His feedback, while at times critical, was essential

to the completion of my thesis. I would like to thank Sandia National Laboratories

for providing my funding through their Critical Skills Master’s Program that made

my graduate studies possible. Sandia National Laboratories is a multi-program lab-

oratory managed and operated by Sandia Corporation, a wholly owned subsidiary

of Lockheed Martin Corporation, for the United States Department of Energy’s Na-

tional Nuclear Security Administration under contract DE-AC04-94AL85000.

I also wish to thank my entire family for supporting me over the years, espe-

cially my wife, Jennifer, and brother, Nathan. Lastly and most importantly, I would

like to thank my parents Koral and Daniel, for raising, supporting, and loving me

throughout my life. Their countless sacrifices have helped make me who I am today.

to them, I dedicate this thesis.



www.manaraa.com

vi

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

SECTION

1 INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

PAPER

I. EVOLVING BLACK-BOX SEARCH ALGORITHMS EMPLOYING GENETIC
PROGRAMMING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 PARSE TREE . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Selection Operation Nodes . . . . . . . . . . . . . . . 7

3.1.2 Variation Operation Nodes . . . . . . . . . . . . . . 9

3.1.3 Set Operation Nodes . . . . . . . . . . . . . . . . . . 9

3.1.4 Other Nodes . . . . . . . . . . . . . . . . . . . . . . 9

3.2 META-ALGORITHM . . . . . . . . . . . . . . . . . . . . . . 10



www.manaraa.com

vii

3.2.1 Black-Box Search Algorithm . . . . . . . . . . . . . . 10

3.2.2 External Verification . . . . . . . . . . . . . . . . . . 11

4 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

II. A PROBLEM CONFIGURATION STUDY OF THE ROBUSTNESS OF A
BLACK-BOX SEARCH ALGORITHM HYPER-HEURISTIC . . . . . . . . . . . . . . 30

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 PARSE TREE . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 NODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Selection Operation Nodes . . . . . . . . . . . . . . . 34

3.2.2 Variation Operation Nodes . . . . . . . . . . . . . . 36

3.2.3 Set Operation Nodes . . . . . . . . . . . . . . . . . . 36

3.2.4 Terminal Nodes . . . . . . . . . . . . . . . . . . . . . 36

3.2.5 Utility Nodes . . . . . . . . . . . . . . . . . . . . . . 37

3.3 META-ALGORITHM . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Black-Box Search Algorithm . . . . . . . . . . . . . . 37

3.3.2 Multi-Sampling . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 External Verification . . . . . . . . . . . . . . . . . . 38

4 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



www.manaraa.com

viii

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

III. HYPER-HEURISTICS: A STUDY ON INCREASING PRIMITIVE-SPACE 58

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 PARSE TREE . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 NODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Typing . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.2 Selection Nodes . . . . . . . . . . . . . . . . . . . . . 65

3.2.3 Variation Nodes . . . . . . . . . . . . . . . . . . . . 65

3.2.4 Utility Nodes . . . . . . . . . . . . . . . . . . . . . . 67

3.2.5 Set-Manipulation Nodes . . . . . . . . . . . . . . . . 67

3.2.6 Terminal Nodes . . . . . . . . . . . . . . . . . . . . . 68

3.3 META-ALGORITHM . . . . . . . . . . . . . . . . . . . . . . 68

3.3.1 Black-Box Search Algorithm . . . . . . . . . . . . . . 69

3.4 EXTERNAL VERIFICATION . . . . . . . . . . . . . . . . . 70

4 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

SECTION

2 CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.1 LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



www.manaraa.com

ix

2.2 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



www.manaraa.com

x

LIST OF ILLUSTRATIONS

Figure Page

PAPER I

3.1 Example Parse Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Example Parse Tree Generated Code . . . . . . . . . . . . . . . . . . 8

3.3 Example EA Parse Tree . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 EA Parse Tree Generated Code . . . . . . . . . . . . . . . . . . . . . 12

4.5 BBSA1 evolved for Deceptive Trap in parse tree form. Initial popula-
tion of 49 solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.6 BBSA2 evolved for Deceptive Trap in parse tree form. Initial popula-
tion of 29 solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.7 BBSA3 evolved for Deceptive Trap in parse tree form. Initial popula-
tion of 39 solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.8 Comparison of an EA, Hill-Climber, and the BBSAs evolved with bit-
length=100 and trap size=5 and evaluated on bit-length=100 and trap
size=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.9 Comparison of an EA, Hill-Climber, and the BBSAs evolved with bit-
length=100 and trap size=5 and evaluated on bit-length=200 and trap
size = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.10 Comparison of an EA, Hill-Climber, and the BBSAs evolved with bit-
length=100 and trap size=5 and evaluated on bit-length=105 and trap
size = 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.11 Comparison of an EA, Hill-Climber, and the BBSAs evolved with bit-
length=100 and trap size=5 and evaluated on bit-length=210 and trap
size = 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

PAPER II

1.1 This figure demonstrates the concepts of Applicability and Fallibility.
Applicability is the proportion of the problem configuration space that
a BBSA can perform higher than a given threshold value. Fallibility
is the difference between the highest and lowest performing problem
configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Example Parse Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Example Parse Tree Generated Code . . . . . . . . . . . . . . . . . . 35



www.manaraa.com

xi

4.4 The worst BBSA found for multi-sampling level one run on the problem
configuration space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 The worst BBSA found for multi-sampling level two run on the problem
configuration space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 The worst BBSA found for multi-sampling level three run on the prob-
lem configuration space. . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 The worst BBSA found for multi-sampling level four run on the prob-
lem configuration space. . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 The worst BBSA found for multi-sampling level five run on the problem
configuration space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 A standard EA run on the problem configuration space. . . . . . . . . 49

PAPER III

3.1 Example Parse Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Example Parse Tree Generated Code . . . . . . . . . . . . . . . . . . 64

5.3 This figure shows a box-plot of the four experiments with n = 30, where
the labels along the x axis correspond to the experiments described in
Table 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 This figure shows a box-plot of the four experiments with n = 40, where
the labels along the x axis correspond to the experiments described in
Table 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 This figure shows a box-plot of the four experiments with n = 50, where
the labels along the x axis correspond to the experiments described in
Table 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Graph of the trend of the four experiments as the problem configura-
tions increases in difficulty . . . . . . . . . . . . . . . . . . . . . . . . 79



www.manaraa.com

xii

LIST OF TABLES

Table Page

PAPER I

4.1 Problem Configurations for Deceptive Trap . . . . . . . . . . . . . . . 14

4.2 GP Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Black-Box Search Algorithm Settings . . . . . . . . . . . . . . . . . . 16

5.4 Final results of all tests averaged over 30 runs with standard deviation 22

6.5 T-Test results for evolved BBSA1 and EA with α=0.05 . . . . . . . . 25

6.6 T-Test results for evolved BBSA2 and EA with α=0.05 . . . . . . . . 25

6.7 T-Test results for evolved BBSA3 and EA with α=0.05 . . . . . . . . 25

6.8 T-Test results for evolved BBSA1 and Hill-Climber with α=0.05 . . . 26

6.9 T-Test results for evolved BBSA2 and Hill-Climber with α=0.05 . . . 26

6.10 T-Test results for evolved BBSA3 and Hill-Climber with α=0.05 . . . 26

6.11 T-test results for all fifteen evolved algorithms run on the evolved
problem configuration with α=0.05 . . . . . . . . . . . . . . . . . . . 27

PAPER II

4.1 Problem Configurations for Multi-Sampling Test. Each test includes
prior tests’ problem configurations; e.g., the run in which there are two
problem configurations uses the first two problem configurations shown. 41

4.2 Problem Configurations that were used to test the robustness of the
BBSA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 EA Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 GP Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Black-Box Search Algorithm Settings . . . . . . . . . . . . . . . . . . 44

5.6 BBSA Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 This table is a summary of the comparison of the evolved BBSA and
the standard EA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



www.manaraa.com

xiii

PAPER III

3.1 Primitive Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Problem Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 GP Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Black-Box Search Algorithm Settings . . . . . . . . . . . . . . . . . . 74

5.5 Rank-Sum Results of Experiment Comparison . . . . . . . . . . . . . 75



www.manaraa.com

1. INTRODUCTION

An interpretation of the No Free Lunch (NFL) Theorem is that all non-

repeating Black-Box Search Algorithms (BBSAs) have the same average performance

over all optimization problems [1]. This means that attempting to create a BBSA

that out-performs all other BBSAs on all problems is infeasible. This also implies

that any general purpose BBSA, such as Evolutionary Algorithms (EAs) or Simu-

lated Annealing (SA), has no guarantee to perform well on an arbitrary problem.

This does not bode well for a practitioner with a problem not shown to be easily

solvable by these general purpose BBSAs. However, by limiting the optimization

problems to a sub-set of all optimization problems, a BBSA can be produced that

will perform better than other BBSAs on that sub-set. Instead of using a general

purpose BBSA, a BBSA that is designed specifically for that subset can be use. This

ensures high-performance instead of leaving it up to chance with the general purpose

BBSAs.

While custom BBSAs are a more reliable solution it raises the problem of how

to design such a BBSA. Designing BBSAs that perform well on an arbitrary problem

is often very difficult and require in depth knowledge of the problem which is not

always available. This leaves the designer at a large disadvantage. A solution to

this problem is to use a method of automated design of algorithms such as hyper-

heuristics. Hyper-heuristics are a type of meta-heuristic in which the search space

also consists of meta-heuristics.

Hyper-heuristics typically use Genetic Programming (GP) as their means to

create meta-heuristics. In the hyper-heuristic, instead of evolving a fully functioning

BBSA, it is common to evolve a single iteration of the BBSA since the typical struc-

ture of a BBSA is based on the repetition of a function which performs the search.

This reduces the amount of code that is necessary to generate automatically. An



www.manaraa.com

2

ideal representation of hyper-heuristics is the standard tree-based GP, though other

methods can be used as well. To determine the quality of the GP represented BBSA

the BBSA is executed on the problem of interest. The quality of the BBSA is tied to

the quality of the solutions it can find.

An important characteristic of the evolved BBSAs is robustness to a varying

problem configuration within the problem class of interest. In this relationship a

problem class is a set of problem configurations. An example of this might be where

the problem class is the 3-SAT problem and a problem configuration might be a given

instance of the 3-SAT problem. In this example the hyper-heuristic can generate

BBSAs that outperform general SAT solvers only if it is run on a subset of SAT

instances which represent a specific distribution such as those generated for circuit

testing. The robustness of BBSA can be defined by two measures [2]. The first is

fallibility and is defined by the difference between the performance on the best and

worst problem configurations. If this value is large it means that the BBSA can

have a large difference in performance depending on the location on the problem

configuration landscape. The second measure is applicability and is defined by the

size of the problem configuration space in which the BBSA performs better than a

threshold value. For a BBSA to be highly robust, it should have a small fallibility

and a large applicability.

There are two approaches to design a hyper-heuristic. The first is a bottom-up

approach in which the primitives of the hyper-heuristic are low-level. Assuming the

set of low-level primitives are Turing complete, any BBSA can be represented using

them. Using GP techniques such as Automatically Defined Functions (ADFs) [3],

common operators, such as selection and mutation operators, can be built up. Un-

fortunately, the search space of a bottom-up hyper-heuristic is extremely large and

it can be very difficult to find any working, much less high-performing, BBSAs. The

second approach is a top-down approach in which primitives of the hyper-heuristic

are high-level. The high-level primitives generally include operators of pre-existing



www.manaraa.com

3

BBSAs. The search space of a top down approach is much smaller than the bottom

up method and is more likely to find working BBSAs. This advantage makes it the

more practical method. The disadvantage of this method is that the process of lower-

ing the level of primitives is a manual process. Unlike the bottom-up approach that

can automatically create higher level primitives through the use of ADFs, there is

currently no process of creating lower level primitives.

To solve some of these problems a hybrid approach can be done. This hybrid

approach would have both high and lower level primitives. This can be done by

starting with solely high-level primitives and manually decomposing these primitives

into more simple primitives. Instead of solely using these new lower level primitives,

they are combined with the high-level primitives. This enables working BBSAs to

be evolved easily but increases the search space to allow for novelty. A draw back to

this method is the increase in search space of hyper-heuristic. While the search space

of this hybrid approach is not as large as the bottom-up approach, it can still hinder

performance.



www.manaraa.com

4

PAPER

I. EVOLVING BLACK-BOX SEARCH ALGORITHMS EMPLOYING
GENETIC PROGRAMMING

Matthew A. Martin, and Daniel R. Tauritz

Natural Computation Laboratory

Department of Computer Science, Missouri Univerisity of Science and Technology,

Rolla, MO 65409

ABSTRACT

Restricting the class of problems we want to perform well on allows Black Box

Search Algorithms (BBSAs) specifically tailored to that class to significantly out-

perform more general purpose problem solvers. However, the fields that encompass

BBSAs, including Evolutionary Computing, are mostly focused on improving algo-

rithm performance over increasingly diversified problem classes. By definition, the

payoff for designing a high quality general purpose solver is far larger in terms of the

number of problems it can address, than a specialized BBSA. This paper introduces

a novel approach to creating tailored BBSAs through automated design employing

genetic programming. An experiment is reported which demonstrates its ability to

create novel BBSAs which outperform established BBSAs including canonical evolu-

tionary algorithms.



www.manaraa.com

5

1 INTRODUCTION

An interpretation of the No Free Lunch (NFL) Theorem is that all non-

repeating Black Box Search Algorithms (BBSAs) have the same average performance

over all optimization problems [1]. This dooms the quest for a BBSA superior to all

other BBSAs on all problems. However, restricting the class of problems we want to

perform well on allows BBSAs specifically tailored to that class to significantly out-

perform more general purpose problem solvers. In contrast, the fields that encompass

BBSAs, including Evolutionary Computing, are mostly focused on improving algo-

rithm performance over increasingly diversified problem classes. By definition, the

payoff for designing a high quality general purpose solver is far larger in terms of the

number of problems it can address, than a specialized BBSA.

This paper introduces a novel approach to creating BBSAs through automated

design employing genetic programming. It furthermore demonstrates that there are

problem classes for which this approach generates BBSAs which significantly outper-

form established BBSAs including canonical Evolutionary Algorithms (EAs). While

there have been previous attempts to automate the design of algorithms in terms of

evolving operators and automating the selection of predefined operators, this work

makes the next logical step and automates the design of algorithm structure. The

proof of concept presented in this paper employs a limited set of relatively complex

primitives extracted from existing canonical BBSAs for which experimental results

are presented on the classic Deceptive Trap problem and compared to the perfor-

mance of a steepest-ascent hill-climber and a canonical EA. A few selected evolved

BBSAs demonstrating the abilities and drawbacks of this method are presented and

analyzed.



www.manaraa.com

6

2 RELATED WORK

Most previous work on employing evolutionary computing to create improved

BBSAs, focused on tuning parameters [4] or adaptively selecting which of a pre-

defined set of operators to use and in which order [5]. The latter employed Multi

Expression Programming to evolve how, and in what order, the EA used selection,

mutation, and recombination. This approach used four high level operations: Initial-

ize, Select, Crossover, and Mutate. These operations were combined in various ways

to evolve a better performing EA. Later this approach was also attempted employing

Linear Genetic Programming (LGP) [6, 7, 8]. While this allowed the EA to identify

the best combination of available selection, recombination, and mutation operators

to use for a given problem, it was limited to a predefined structure.

A more recent approach to evolve BBSAs employed Grammatical Evolu-

tion (GE) [9] which uses a grammar to describe structure, but highly constrained

to the standard EA model. No significant increase in result quality was reported.

Genetic Programming (GP) introduced the concept of evolving executable

programs [3]. The first attempts at applying GP to the generation of BBSAs was to

evolve individual EA operators. The primary effort has been to create improved EA

variation operators [10, 11, 12, 13]. Some limited work has been done on evolving EA

selection operators [14, 15]. Thus far the focus has been on evolving EA operators,

rather than entire BBSAs of indiscrimate type. This paper takes the next logical

step, namely evolving the structure of BBSAs to create novel and unexpected types

of BBSAs.



www.manaraa.com

7

3 METHODOLOGY

The specific focus of the research reported in this paper is to evolve BBSAs

tailored to a specific problem class which can significantly outperform more general

purpose BBSAs. GP was employed where fitness was based on the performance of

an evolved BBSA with efficiency as tie-breaker.

3.1. PARSE TREE

Instead of representing the entirety of an algorithm within a parse tree, the

representation is a single iteration of a BBSA. A parse tree is used to represent the

iteration for the evolutionary process such that standard GP operators will work

effectively. The parse tree is evaluated in a pre-order fashion. Each non-terminal

node will take one or more sets of solutions (including the empty set or a singleton

set) from its child node(s), perform an operation on the set(s) and then return a

set of solutions. The set that the root node returns will be stored as the ‘Last’ set

which can be accessed in future iterations to facilitate population-based BBSAs. An

example of a randomly generated BBSA represented as a parse tree can be seen in

Figure 3.1.

The terminal nodes are sets of solutions. These sets include the ‘Last’ set,

as well as auxiliary sets which will be explained in Section 3.1.4. The non-terminal

nodes that compose these trees are operations extracted from pre-existing algorithms.

The nodes are broken down into selection nodes, variation nodes, set operation nodes,

and other utility nodes. The following subsections describe the node type instances

employed in the experiments reported in this paper.

3.1.1. Selection Operation Nodes. Two principal selection operations were

employed in the experiments. The first of these is k-tournament selection with re-

placement. This node has two parameters, namely k and the number of solutions

selected, the second is count which designates the number of solutions passed to the

next node. The second selection operation employed is truncation selection. This



www.manaraa.com

8

Figure 3.1: Example Parse Tree

initialize population
evaluate initial population
A = [ ]
while termination condition not met do

X = kTournament(Last, k = 5,count =30)
A = X
Y = kTournament(A,k = 10, count = 15)
Y = uniformRecombination(Y, count = 15)
Z = X+Y
Z = mutate(Z, rate = 5%)
evaluate(Z)
Last = truncate(Z, 24)

end while
evaluate(Last)

Figure 3.2: Example Parse Tree Generated Code



www.manaraa.com

9

operator takes the n best solutions from the set passed in, n being one of its param-

eters.

3.1.2. Variation Operation Nodes. For the experiments, four variation

operations were used. The first variation operation is the standard binary uniform

crossover for multiple parents. This variation operation returns n solutions, n being

a parameter of the node. The second and third variation operations are the standard

bit-flip mutation. The only difference between these two operations is that one creates

a copy of each solution and then applies the mutation, while the other alters the

solutions that were passed in. The last variation operator is diagonal crossover with

multiple parents [16] which returns the same number of solutions as were passed in.

This variation node has one parameter, n, which determines the number of points

employed by crossover.

All the experiments reported in this paper are on binary problems, thus the

use of binary variation operators. However, this is not a general restriction and

representation appropriate variation operators may be employed.

3.1.3. Set Operation Nodes. The experiments reported in this paper em-

ployed two distinct set operations. The first is the union operation named “Add Set”.

This node takes two sets of solutions and returns the union of the sets passed into it.

The other operation is the save operation called “Make Set”. This operation saves

a copy of the set passed into it. This set can be used elsewhere in the algorithm as

explained in Section 3.1.4.

3.1.4. Other Nodes. The last type of non-terminal node employed in this

paper is the evaluation node. This node evaluates all of the solutions that are passed

into it. Another option considered was, instead of having an evaluation node, to

evaluate the solutions that were returned from the root node. This option was not

selected to allow for more freedom in the structure of the algorithm.

The terminal nodes in this representation were sets of solutions. These sets

could either be the ‘Last’ set returned by the previous iteration or a set that was



www.manaraa.com

10

created by the save operation. These saved sets persist from iteration to iteration

such that if a set is referenced before it has been saved in a given iteration, it will

use the save from the last iteration. At the beginning of each run, these sets are set

to the empty set.

3.2. META-ALGORITHM

A customized GP was employed to meta-evolve the BBSAs. The two primary

variation operators employed were the standard sub-tree crossover and sub-tree mu-

tation. An alteration to the standard sub-tree mutation was made. The maximum

number of nodes being added in this mutation is from 1 to a user defined value.

Another mutation operation was added to this algorithm that selects a random node

from the parse-tree and randomizes the parameters if it has any. To ensure that the

GP has a good initial population, when creating the initial population each BBSA

must have a non-zero fitness value. This discards the BBSAs that do not evaluate

any solutions that they are given.

3.2.1. Black-Box Search Algorithm. Each individual in the GP’s popu-

lation is a BBSA. To evaluate the fitness of an individual, its encoded BBSA is run

for a user-defined number of times. Each run of the BBSA begins with the population

initialization and the evaluation of the initial population. The size of the population

is evolved along with the structure of the algorithm. Then the parse-tree is evaluated

until one of the termination criteria are met. Once a run of the BBSA is completed,

the ‘Last’ set is evaluated to ensure that the final fitness value is representative of the

final population. Logging is performed during these runs to track when the BBSA

converged and what the converged solution quality is.

The fitness of a BBSA is primarily determined by the fitness function that it

employs to evaluate the solutions it evolves. In addition to this, parsimony pressure

is added to ensure that the parse trees do not get too large. The parsimony pressure

is calculated by multiplying the number of nodes in a tree by a user defined value.

The parsimony pressure is subtracted from the best solution in the final population



www.manaraa.com

11

averaged over all runs to get the fitness of the BBSA. When comparing two BBSAs,

in case of equal fitness, convergence time is employed as a tie-breaker.

The evaluation of the BBSAs is the computational bottleneck for this ap-

proach. Thus, to minimize time wasted on poor solutions, a partial evaluation is

supported to allow terminating poor solutions before they are fully evaluated. This

is accomplished by applying four limiting factors. First of all, there is a maximum

number of evaluations that a BBSA may perform during each run. If a BBSA ex-

ceeds that number, then it will automatically terminate mid-run. Secondly, there

is a maximum number of iterations that the BBSA may perform before it will halt.

This addition of an iteration limit adds pressure to the GP to evolve algorithms with

more evaluations per iteration. If this iteration limit were not put in place, it would

take BBSAs with very low evaluations per iteration much longer to be evaluated.

Thirdly, the algorithm counts the relative number of operations performed. Each

node represents an operation, and these operations can take a significant amount of

time to perform. A weight is associated with each node that represents an estimation

of how many operations that node takes per input solution. Once a node is executed,

that weight is added to a running total of the operations for that run. Once the

limit is reached, the run will end. This is to prevent bulky algorithms with few or no

evaluations to be terminated. The fourth method is by convergence. If an algorithm

has not improved in i iterations, then the run will end. If the operation limit or

the evaluation limit are reached mid-way through an iteration, then the rest of that

iteration is not run.

3.2.2. External Verification. To ensure that the performance of the evolved

BBSA is accurate, code is generated to represent the parse tree. This is done to ex-

ternally verify that the performance that the GP shows for a given BBSA is accurate

when actually implemented. An example of a parse tree and the code generated can

be found in Figure 3.1 and Figure 3.2. This verification was employed for the testing

of the BBSAs in all experiments.



www.manaraa.com

12

Figure 3.3: Example EA Parse Tree

initialize population
evaluate initial population
while termination condition not met do

Y = kTournamentLast(k = 16, count = 4)
Y = uniformRecombination(Y, count = 16)
Z = mutate(Z, rate = 6.3%)
evaluate(Z)
Z = Z+Last
Last = truncate(Z, 20)

end while

Figure 3.4: EA Parse Tree Generated Code



www.manaraa.com

13

4 EXPERIMENTS

To demonstrate the proposed approach’s ability to create novel, high-performance

BBSAs, it was run on a selected problem class and compared with established BB-

SAs. For the selected problem class, the BBSAs are evolved with a given problem

configuration. Once the BBSA has been evolved, it is run on different problem con-

figurations to determine if the solution is a good solver for the generalized problem

class. The evolved BBSAs are compared against a standard EA and a Steepest Ascent

Hill-Climber. To ensure that the human bias of implementing an algorithm would

not sway the results of the experiments, the EA was produced by the same external

verification method described earlier. The EA was encoded with the parse tree shown

in Figure 3.3 which generated the code shown in Figure 3.4. The parameter values for

this algorithm were found using GP’s Alternate Mutation for 2000 evaluations which

is the maximum amount of parameter tuning that a BBSA could have during the

experiments. The Hill-Climber could not be perfectly reproduced with the currently

implemented nodes. Thus, this code had to be generated manually for the tests.

The classic Deceptive Trap problem [17] is employed as benchmark in this

paper. It divides a bit-string into traps of size j bits each which are scored by using

the following equation where t is equal to the sum of the bit values in the trap.

trap(t) =


j − 1 − t (t < j)

j (t = j)

The BBSAs were evolved with a bit-length of 100 and a trap size of 5 as

the problem configuration. For the evolved BBSAs, code was generated using the

external verification method described earlier. This generated code was run on the

problem configurations shown in Table 4.1. This is done to determine if the evolved

algorithm is a general solver for the problem class.



www.manaraa.com

14

Table 4.1: Problem Configurations for Deceptive Trap

Bit-Length Trap Size
100 5
200 5
105 7
210 7

For these experiments, fifteen BBSAs were evolved. During the evolution

process, each BBSA was run five times. The external verification method was used

to generate code for data-gathering. Each of the evolved BBSAs was run 30 times

for each of the problem configurations. Each of the algorithms was run for 50,000

evaluations. Then the results were compared with an EA and a Hill-Climber, each

run 30 times with the same problem configurations.

There are many settings that can be parameter tunings that can be set for

both the GP as well as the BBSA generation settings. All of the experiments were

conducted under the same settings. The GP was run for 2000 evaluations. The initial

population was 50 individuals and each generation 20 new individuals are created.

k-tournament selection with k = 15 was employed for parent selection. All of the

recombination and mutation operations have an equal chance of being used. The

parsimony pressure for the tree size was set to .001 per node. The maximum number

of iterations the BBSAs can use is 500000 and the maximum number of iterations is

10000. All the parameter settings for the GP are summarized Table 4.2.

For the generation of the BBSAs, heuristic constraints were employed to limit

various parameters to reasonable values. The maximum number of individuals se-

lected in selection nodes was set to 25. The maximum initial population was set to 50

individuals. The maximum k value used for the k-tournament is 25. The maximum

number of points for diagonal crossover is 10 points. All the parameter settings for

the BBSA are summarized in Table 4.3.



www.manaraa.com

15

Figure 4.5: BBSA1 evolved for Deceptive Trap in parse tree form. Initial population
of 49 solutions

Figure 4.6: BBSA2 evolved for Deceptive Trap in parse tree form. Initial population
of 29 solutions

Figure 4.7: BBSA3 evolved for Deceptive Trap in parse tree form. Initial population
of 39 solutions



www.manaraa.com

16

Table 4.2: GP Configurations

Parameter Value
Evaluations 2000

Initial Population 50
Children per Generation 20

k-Tournament 15
Sub-Tree Crossover Probability 33%
Sub-Tree Mutation Probability 33%
Alternate Mutation Probability 33%

Alternate Mutation Depth 5
Parsimony Pressure 0.001

Maximum Operations 500,000
Maximum Iterations 10,000

Table 4.3: Black-Box Search Algorithm Settings

Parameter Value
Evolution Runs 5

Evaluations 50,000
Maximum k Value 25

Maximum Number of Selected Individuals 25
Maximum Initial Population 50
Maximum Crossover Points 10



www.manaraa.com

17

5 RESULTS

Three algorithms were selected from the fifteen evolved algorithms to discuss

in more detail. They were selected because they had features that help character-

ize the features and flaws of the proposed approach. The three algorithms have a

very different structure from each other and versus existing canonical BBSAs. The

structure of the algorithms is presented in figures 4.5-4.7. The algorithms are labeled

BBSA1, BBSA2, and BBSA3, respectively.

Comparisons of the evolved BBSAs and the EA can be seen in figures 5.8-5.11.

These graphs are the averages of the 30 runs that were performed for the statistical

tests. For all of these tests the algorithms were evolved on the problem configuration

of a bit-length of 100 and a trap size of 5, and were run on the problem configurations

shown in Table 4.1.

A summary of the final states of the various BBSAs can be found in Table 5.4

which shows the results for each BBSA and problem configuration combinations av-

eraged over all runs along with the standard deviation.

To determine statistically if the evolved BBSAs performed better than the

EA and the Hill-Climber, a two-tailed t-test was used. The results of these tests are

presented in tables 5-10. In the results column of these tables, a + indicates that

the BBSA performed better than the EA/Hill-Climber. A - indicates that the BBSA

performed worse than the EA/Hill-Climber. A ∼ indicates that there is no statistical

difference between the algorithms. A summary of the t-test run on all of the BBSAs

can be found in Table 6.11.



www.manaraa.com

18

Figure 5.8: Comparison of an EA, Hill-Climber, and the BBSAs evolved with bit-
length=100 and trap size=5 and evaluated on bit-length=100 and trap
size=5



www.manaraa.com

19

Figure 5.9: Comparison of an EA, Hill-Climber, and the BBSAs evolved with bit-
length=100 and trap size=5 and evaluated on bit-length=200 and trap
size = 5



www.manaraa.com

20

Figure 5.10: Comparison of an EA, Hill-Climber, and the BBSAs evolved with bit-
length=100 and trap size=5 and evaluated on bit-length=105 and trap
size = 7



www.manaraa.com

21

Figure 5.11: Comparison of an EA, Hill-Climber, and the BBSAs evolved with bit-
length=100 and trap size=5 and evaluated on bit-length=210 and trap
size = 7



www.manaraa.com

22

Table 5.4: Final results of all tests averaged over 30 runs with standard deviation

Bit-Length Trap Size EA Hill-Climber BBSA1 BBSA2 BBSA3
100 5 0.836 (0.0245) 0.834 (0.0145) 0.872 (0.0236) 0.976 (0.0102) 0.881 (0.0275)
200 5 0.789 (0.0249) 0.839 (0.0108) 0.795 (0.0273) 0.945 (0.00990) 0.826 (0.0178)
105 7 0.862 (0.0277) 0.858 (0.00884) 0.858 (0.0149) 0.986 (0.00841) 0.864 (0.0195)
210 7 0.818 (0.0208) 0.863 (0.00517) 0.791 (0.0219) 0.915 (0.0195) 0.810 (0.0218)



www.manaraa.com

23

6 DISCUSSION

On the problem configuration for which the BBSAs were evolved, the quality

of the solutions found was better than the EA and the Hill-Climber. However, on the

other problem configurations the results were generally not as good. The algorithms

BBSA1 and BBSA3 performed no better than the EA and the Hill-Climber. It

appears as though these BBSAs over-specialized to the problem configuration they

were evolved on.

BBSA2, however, performed better than all other algorithms on all problem

configurations. Its only noticeable drawback is its relatively slow convergence. This

BBSA shows that it is possible to evolve generic solvers that can perform very well

on a problem class regardless of problem configuration.

In all experiments, the EA converges more quickly than the evolved BBSA; the

Hill-Climber converges more quickly than two of the three evolved BBSAs. This is

primarily due to the speed at which the evolved algorithms converge being secondary

to solution quality. This problem might be avoided by using Multi-Objective GP

which would allow the user to select the trade-off between speed and quality that

best suits their needs.

The BBSAs that were evolved for this problem preferred to use diagonal re-

combination rather than uniform recombination. This is primarily due to how the

problem was represented. Each trap was in a continuous part of the bit-string and

thus, it would be more beneficial for those parts to be kept together to ensure the

integrity of the already solved traps.

This experiment also confirmed an observation from the preliminary exper-

iments that there is redundancy in the structure of the algorithm. An example of

this can be seen in BBSA3. On the right side of the tree the ‘Last’ set is added

to itself which yields the ‘Last’ set. This add operation could be replaced by the

‘Last’ set and would behave in the same way. Other examples of this were when a

set would be evaluated multiple times without being altered. In this case one of the



www.manaraa.com

24

evaluations could be removed without changing how the BBSA performed. Some of

these redundancies are very difficult to remove with the standard GP recombination

and mutation operations. One way to fix this would be a pruning method that would

intelligently remove redundant nodes in the tree.

From analysis of the populations of the failing runs, the failure was most likely

due to a problem with diversity of the population. Upon examination of the runs

in which they did succeed in finding good solutions, this problem of diversity still

existed. Once the GP is made multi-objective, this problem with diversity might be

fixed by employing the crowding distance metric of NSGA-II [18] by determining how

similar the structure of the BBSAs are.

In Table 6.11 it can be seen that nine of the fifteen BBSAs performed better

than both the EA and Hill-Climber. The remaining six algorithms were found to

perform worse than both the EA and Hill-Climber. This demonstrates that this

approach not only has the ability to create well performing algorithms, but can create

them more consistently than previous methods.



www.manaraa.com

25

Table 6.5: T-Test results for evolved BBSA1 and EA with α=0.05

Bit-Length Trap Size Result p-Value
100 5 + 6.69 E-9
200 5 ∼ 0.141
105 7 ∼ 0.145
210 7 - 2.91 E-8

Table 6.6: T-Test results for evolved BBSA2 and EA with α=0.05

Bit-Length Trap Size Result p-Value
100 5 + 1.35 E-42
200 5 + 1.38 E-56
105 7 + 6.16 E-52
210 7 + 2.27 E-25

Table 6.7: T-Test results for evolved BBSA3 and EA with α=0.05

Bit-Length Trap Size Result p-Value
100 5 + 7.93 E-13
200 5 + 3.53 E-13
105 7 ∼ 0.217
210 7 ∼ .0412



www.manaraa.com

26

Table 6.8: T-Test results for evolved BBSA1 and Hill-Climber with α=0.05

Bit-Length Trap Size Result p-Value
100 5 + 1.2 E-9
200 5 - 4.23 E-11
105 7 ∼ 0.844
210 7 - 1.23 E-15

Table 6.9: T-Test results for evolved BBSA2 and Hill-Climber with α=0.05

Bit-Length Trap Size Result p-Value
100 5 + 1.58 E-42
200 5 + 2.91 E-43
105 7 + 1.61 E-52
210 7 + 2.97 E-15

Table 6.10: T-Test results for evolved BBSA3 and Hill-Climber with α=0.05

Bit-Length Trap Size Result p-Value
100 5 + 1.77 E-10
200 5 - 0.00179
105 7 ∼ 0.0875
210 7 - 4.43 E-14



www.manaraa.com

27

Table 6.11: T-test results for all fifteen evolved algorithms run on the evolved problem
configuration with α=0.05

BBSA EA Hill-Climber
1 + +
2 + +
3 + +
4 - -
5 + +
6 + +
7 + +
8 - -
9 - -
10 - -
11 + +
12 - -
13 + +
14 + +
15 - -



www.manaraa.com

28

7 CONCLUSIONS

In this paper it was shown that using GP it is possible to evolve BBSAs

that can beat canonical BBSAs for a given problem class. Though many of the

primitives were extracted from these canonical BBSAs, the resulting BBSAs bear

little resemblance to them. While the current nodes are high level operations, this

paper shows that these high level operations can be used in a more effective manner,

for certain problems, than established BBSAs.

One problem with the current method is that the algorithms can become over-

specialized if the problem class can have multiple problem configurations. In the case

of BBSA1 and BBSA3, they performed well for the problem configuration they were

evolved on, but they did not perform as well on other problem configurations. BBSA2,

on the other hand, did not over-specialize and performs very well on every problem

configuration. This shows that this method can evolve general problem solvers for

the problem class.



www.manaraa.com

29

8 FUTURE WORK

The next step to improve upon the proposed approach, is to solve the issue

of over-specialization. This might be achieved by evolving the BBSAs using multiple

problem configurations. Each evolved BBSA would be evaluated using a set of prob-

lem configurations that better represents the problem configurations that the user

cares about.

Other future work includes using Multi-Objective GP to evolve BBSAs. This

will allow users to select the BBSA with the best trade-off between speed and solution-

quality for their purposes.

The proposed approach needs to be tested on a wider variety of problem classes

to validate it more thoroughly. While this paper demonstrates that the proposed

method can evolve efficient BBSAs for the deceptive trap problem, it is yet to be

proven that this method will work well for other problems and representations.

Finally, while the specific focus of this paper was to evolve tailored BBSAs

which significantly outperform more general BBSAs on specific problem classes, the

proposed approach can easily be extended to evolve more general purpose BBSAs to

compete directly with established general purpose BBSAs such as EAs.



www.manaraa.com

30

II. A PROBLEM CONFIGURATION STUDY OF THE ROBUSTNESS
OF A BLACK-BOX SEARCH ALGORITHM HYPER-HEURISTIC

Matthew A. Martin, and Daniel R. Tauritz

Natural Computation Laboratory

Department of Computer Science, Missouri Univerisity of Science and Technology,

Rolla, MO 65409

ABSTRACT

Black-Box Search Algorithms (BBSAs) tailored to a specific problem class

may be expected to significantly outperform more general purpose problem solvers,

including canonical evolutionary algorithms. Recent work has introduced a novel ap-

proach to evolving tailored BBSAs through a genetic programming hyper-heuristic.

However, that first generation of hyper-heuristics suffered from over-specialization.

This paper presents a study on the second generation hyper-heuristic which employs

a multi-sample training approach to alleviate the over-specialization problem. In

particular, the study is focused on the affect that the multi-sample approach has

on the problem configuration landscape. A variety of experiments are reported on

which demonstrate the significant increase in the robustness of the generated algo-

rithms to changes in problem configuration due to the multi-sample approach. The

results clearly show the resulting BBSAs’ ability to outperform established BBSAs,

including canonical evolutionary algorithms. The trade-off between a priori compu-

tational time and the generated algorithm robustness is investigated, demonstrating

the performance gain possible given additional run-time.



www.manaraa.com

31

1 INTRODUCTION

Practitioners tend to be interested in solving a particular problem class which

may fall anywhere on the continuum from a single instance problem to an arbitrarily

large problem class. However, progress in the field of meta-heuristics has typically

been aimed at solving increasingly varied problem classes. There is a clear need

for meta-heuristics tunable to the needs of practitioners in terms of the scope of the

problem classes of interest, whether that be solving solely instances of MAXSAT with

a fixed clause length and set number of variables, or arbitrary MAXSAT instances.

A novel approach to creating BBSAs through a hyper-heuristic employing

Genetic Programming (GP) demonstrated that there are problem classes for which

BBSAs can be evolved which significantly outperform established BBSAs, including

canonical Evolutionary Algorithms (EAs) [19]. That approach, however, had the

drawback of tending to overspecialize the BBSAs to outperform established algo-

rithms only on the trained problem configurations.

This paper presents a study on the second generation hyper-heuristics em-

ploying a multi-sample training approach which drastically decreases the probability

of evolving BBSAs that suffer from over-specialization [20]. It is focused on the af-

fect that the multi-sample approach has on the problem configuration landscape. An

investigation is presented on the trade-off between the extra a priori computational

time due to increasing sampling size and the increased robustness of the generated

BBSAs in terms of lower variation in performance when varying the problem config-

uration. This is of critical importance to practitioners who need to be able to rely

on the consistency of the generated BBSAs on all instances of their problem class of

interest.

The goal of the research reported in this paper is to show that increasing

the multi-sampling level increases the robustness of the generated BBSAs. Two

primary measures of robustness are employed [2], as shown in Figure 1.1. The first is

fallibility; if this value is large it means that the BBSA can have a large difference



www.manaraa.com

32

Figure 1.1: This figure demonstrates the concepts of Applicability and Fallibility.
Applicability is the proportion of the problem configuration space that a
BBSA can perform higher than a given threshold value. Fallibility is the
difference between the highest and lowest performing problem configura-
tions.

in performance depending on the location on the problem configuration landscape.

The second measure is applicability; it indicates the size of the problem configuration

space in which the BBSA performs better than a threshold value. For a BBSA to be

highly robust, it should have a small fallibility and a large applicability.



www.manaraa.com

33

2 RELATED WORK

Most previous work on employing evolutionary computing to create improved

BBSAs has focused on tuning parameters [4] or adaptively selecting which of a pre-

defined set of operators to use and in which order [5]. The latter employed Multi

Expression Programming to evolve how, and in what order, the EA used selection,

mutation, and recombination. This approach used four high level operations: Initial-

ize, Select, Crossover, and Mutate. These operations were combined in various ways

to evolve a better performing EA. Later this approach was also attempted employing

Linear GP [6, 7, 8]. While this allowed the EA to identify the best combination of

available selection, recombination, and mutation operators to use for a given problem,

it was limited to a predefined structure.

A more recent approach to evolving BBSAs employed Grammatical Evolu-

tion (GE) [9] employs a grammar to describe structure, but is constrained to the

canonical EA model. In later work [21], due to the computational load necessary for

evaluating algorithms, a study was presented on how restricting the computational

time for evaluating the evolved algorithms affects the structure.

First attempts at applying GP to the generation of BBSAs was to evolve

individual EA operators [10, 11]. The primary effort has been to create improved

EA variation operators [10, 11, 12, 13]. Some work has been done on evolving EA

selection operators [14, 15].

Burke et al. described a high-level approach to evolving heuristics [22]. That

approach was extended to evolve entire BBSAs of indiscriminate type [19]. This paper

describes an improvement on that extension employing multi-sample evaluation to

increase the robustness of the produced BBSAs.



www.manaraa.com

34

3 METHODOLOGY

The specific focus of the research reported in this paper is to demonstrate

the significant increase in the robustness of the generated algorithms to changes in

problem configuration due to the multi-sample approach. GP was employed to evolve

the algorithms where fitness was based upon the performance averaged over a set of

training problem configurations.

3.1. PARSE TREE

In order to condense the quantity of code needed to be evolved, the common

iterative nature of BBSAs is exploited by representing a single iteration of a BBSA

rather than the entirety of the algorithm. A parse tree is used to represent the

iteration for the evolutionary process such that standard GP operators will work

effectively.

Each non-terminal node will take one or more sets of solutions (including the

empty set or a singleton set) from its child node(s), perform an operation on the

sets(s) and then return a single set of solutions. The nodes continue operating in a

post-order fashion and the set that the root node returns will be stored as the ‘Last’

set which can be accessed in future iterations to facilitate population-based BBSAs.

The terminal nodes can either be sets of previous solutions or a set of randomly

generated solutions. The sets include the ‘Last’ set as well as auxiliary sets which

will be explained in Section 3.2.4. An example of a BBSA represented as a parse tree

and related code representation are shown in figures 3.2 and 3.3.

3.2. NODES

The non-terminal nodes that compose these trees are operations extracted

from pre-existing algorithms. The nodes are broken down into selection, variation,

set-manipulation, terminal, and utility nodes. The following subsections describe the

operations employed of each type for the experiments reported in this paper.



www.manaraa.com

35

Figure 3.2: Example Parse Tree

Last = [initialize population]
evaluate(Last)
A = [ ]
while termination condition not met do

X = kTournament(Last, k = 5,count =25)
A = X
Y = randInd(count = 5)
Y = A + Y
Y = kTournament(Y,k = 10, count = 15)
Y = uniformRecombination(Y, count = 15)
Z = X+Y
Z = mutate(Z, rate = 5%)
evaluate(Z)
Last = truncate(Z, 24)

end while
evaluate(Last)

Figure 3.3: Example Parse Tree Generated Code



www.manaraa.com

36

3.2.1. Selection Operation Nodes. Two principal selection operations were

employed in the experiments. The first of these is k-tournament selection with re-

placement. This node has two parameters, namely k and the number of solutions

selected, the second is count which designates the number of solutions passed to the

next node. The second selection operation employed is truncation selection. This

operator takes the n best solutions from the set passed to it, n being one of its

parameters.

3.2.2. Variation Operation Nodes. For the experiments, three primary

variation operations are used; the first one is standard bit-flip mutation. This opera-

tion has a single argument, rate, which is the probability that a given bit is flipped.

The second operation is the standard uniform recombination with an arbitrary num-

ber of parents. This operation has a single argument, count, which designates the

number of children generated. The final primary variation operation is diagonal

crossover [16] which returns the same number of solutions as are passed in. This

variation node has one parameter, n, which determines the number of points used by

the crossover operation.

3.2.3. Set Operation Nodes. The experiments reported in this paper em-

ploy two distinct set operations. The first is the union operation. This node takes

two sets of solutions and returns the union of the sets passed into it. The other

operation is the save operation called “Make Set”. This operation saves a copy of

the set passed into it. This set can be used elsewhere in the algorithm as explained

in Section 3.2.4.

3.2.4. Terminal Nodes. The terminal nodes in this representation are sets

of solutions. They can either be the ‘Last’ set returned by the previous iteration, a

set that was created by the save operation, or a set of randomly created solutions.

The saved sets persist from iteration to iteration such that if a set is referenced before

it has been saved in a given iteration, it will use the save from the previous iteration.

At the beginning of each run, the saved sets are set to the empty set and the ‘Last’ set



www.manaraa.com

37

is set to a randomly generated population of solutions. The randomly generated set

of solutions terminal node creates a set of n solutions, n being one of its parameters,

and returns that to its parent node.

3.2.5. Utility Nodes. There is currently one utility operation employed for

use in the experiments. This node is the evaluation node which evaluates all of the

solutions that are passed into it. Operations that can be added to this group in the

future can include looping nodes and conditional nodes.

3.3. META-ALGORITHM

GP is employed to meta-evolve the BBSAs. The two primary variation op-

erators employed are the standard sub-tree crossover and mutation altered to make

the maximum number of nodes being added a user defined value. Another mutation

operation was added to this algorithm that with equal chance randomizes the size of

the initial ‘Last’ set or selects a random node from the parse-tree and randomizes the

parameters if it has any; if the node does not have any parameters, the mutation is

executed again. To ensure that the genetic program produces good BBSAs, the ones

which do not evaluate any solutions are discarded upon generation.

3.3.1. Black-Box Search Algorithm. Each individual in the GP popula-

tion encodes a BBSA. To evaluate the fitness of an individual, its encoded BBSA is

run for a user-defined number of times. Each run of the BBSA begins with popula-

tion initialization, followed by the parse-tree being repeatedly evaluated until one of

the termination criteria is met. Once a run of the BBSA is completed, the ‘Last’ set

and all saved sets are evaluated to ensure that the final fitness value is representative

of the final population. Logging is performed during these runs to track when the

BBSA converges and what the average solution quality and best current solution is.

The fitness of a BBSA is estimated by computing the fitness function that it

employs on the solutions it evolves averaged over multiple runs. Parsimony pressure is

added to temper the growth of the parse trees. The parsimony pressure is calculated

by multiplying the number of nodes in a tree by a user defined value. The parsimony



www.manaraa.com

38

pressure is subtracted from the best solution in the final population averaged over all

runs to get the fitness of the BBSA.

Learning conditions were added to terminate poor solutions before they are

fully evaluated in order to ameliorate the very computationally intensive nature of

hyper-heuristics analogously to [21]. This is accomplished by applying four limiting

factors. First of all, if a BBSA exceeds the maximum number of evaluations, then

it will automatically be terminated mid-run. Secondly, there is a maximum number

of iterations that the BBSA may perform before it will halt. This addition of an it-

eration limit adds pressure to evolve algorithms with more evaluations per iteration.

Thirdly, the algorithm counts the relative number of operations performed. Each

node represents an operation, and these operations can take a significant amount

of time to perform. A weight is associated with each node that represents an esti-

mation of how many operations that node takes per input solution. Once a node

is executed, that weight is added to a running total of the operations for that run.

Once the limit is reached, the run will end. This is to prevent inefficient algorithms

which despite evaluating few solutions incur a high computational cost. The fourth

method terminates algorithms which have converged based on not having improved

in i iterations.

3.3.2. Multi-Sampling. A major issue identified in [19] is the problem of

over-specialization when training on a single problem configuration of a given prob-

lem class. Following the approach suggested in [19], the BBSAs are executed on

multiple problem configurations of the problem class of interest. On each problem

configuration, the BBSAs run a user-specified number of times. This addition al-

lows the user to control the robustness of the generated BBSA. If the user requires a

BBSA that performs very consistently, then running the algorithm with more problem

configurations is beneficial.

3.3.3. External Verification. To assure that the performance of the evolved

BBSA is consistent with its performance reported during evolution, executable code



www.manaraa.com

39

is generated to represent the parse tree as a full BBSA. This is done to externally

verify that the performance that the GP shows for a given BBSA is accurate when

actually implemented. The generated code is used in all of the experiments to insure

unbiased execution of the BBSAs. An example of a parse tree and pseudo-code gen-

erated can be found in Figure 3.2 and Figure 3.3. This verification was employed for

the testing of the BBSAs in all experiments.



www.manaraa.com

40

4 EXPERIMENTS

To demonstrate that the addition of multi-sampling evaluation of the BBSA

reduces the probability of over-specialization, the algorithm was run on a series of

multi-sampling levels, where a level is defined by the number of training problem

configurations it samples. Once the BBSA has been evolved with a given multi-

sampling level, it is tested on a super-set of problem configurations to determine the

preliminary robustness of the BBSA and to demonstrate that they can out perform

a standard EA.

The classic Deceptive Trap problem [17] is employed as benchmark in this

paper. It divides a bit-string into traps of size j bits each which are scored using the

following equation where t is equal to the sum of the bit values in the trap.

trap(t) =


j − 1 − t (t < j)

j (t = j)

This problem was chosen to compare the results in this paper with those in [19],

where BBSAs were evolved and suffered from over-specialization.

The BBSAs were evolved with a multi-sampling level from one to five. The

problem configurations are shown in Table 4.1. Each run includes the problem con-

figurations from the runs before; e.g., the runs with two samples use the problem

configurations from the first two rows. For each evolved BBSA, code was generated

to determine its robustness externally from the evolution. To test the preliminary

robustness of the generated BBSAs, they were run on a super-set of problem config-

urations as shown in Table 4.2. This set includes the training set to validate that the

fitness found during evolution is accurate.

The EA has an initial population of 50 and generates 20 children each gen-

eration. It uses k-Tournament with replacement for parent selection with k being

15, uniform recombination, bit-flip mutation with a 5% rate, and truncation survivor



www.manaraa.com

41

Table 4.1: Problem Configurations for Multi-Sampling Test. Each test includes prior
tests’ problem configurations; e.g., the run in which there are two problem
configurations uses the first two problem configurations shown.

Number of Samples Bit-Length Trap Size
1 100 5
2 200 5
3 105 7
4 210 7
5 300 5

selection. The EA parameter settings are summarized in Table 4.3. These values

were selected to be similar to those in [19] with minor hand tuning to perform well

with the first problem configuration shown in Table 4.1.

For these experiments, four BBSAs were evolved at each multi-sampling level.

During the evolution each problem configuration was run five times. Meaning that

in the experiment with multi-sampling level one, each BBSA evaluation is five runs

where with multi-sampling level five, each BBSA evaluation is twenty-five runs. All

Table 4.2: Problem Configurations that were used to test the robustness of the BBSA.

Bit-Length Trap Size
100 5
200 5
105 7
210 7
300 5
99 9
198 9
150 5
250 5
147 7
252 7



www.manaraa.com

42

Table 4.3: EA Configurations

Parameter Value
Population Size 50

Children per Generation 20
Parent Selection k 15

Recombination Uniform
Mutation Rate 5%

Survival Selection Truncation

of the testing data was produced by executing the code generated by the meta-

algorithm. Each of the evolved BBSAs were executed 30 times for each of the problem

configurations. Each algorithm was run for 100,000 evaluations. These results were

compared to an EA executed 30 times for each of the problem configurations.

After collecting results from the first experiment which was focused on deter-

mining the preliminary robustness increase caused by multi-sampling, a secondary

experiment was run to study the effect of multi-sampling on the performance land-

scape across a wide set of problem configurations. The areas of interest in this

experiment are the problem configurations that were significantly different from the

trained problem configurations. The BBSA with the largest fallibility, where fallibil-

ity indicates the difference between best and worst performance on the test problem

configurations, was selected from each multi-sampling level to demonstrate a worst

case scenario. These BBSAs, along with an EA, were run on all problem configu-

rations with k from 4 to 20 inclusive and bit-lengths from roughly 70 to 500. The

algorithms were run five times on each problem configuration.

All of the experiments were conducted under the same settings. The meta-

algorithm was run for 5000 evaluations. The initial population was 100 individuals

and each generation 40 new individuals were created. k-tournament selection with

replacement and k = 8 was employed for parent selection. The sub-tree crossover and

mutation operations had 30% chance of being used while the alternate mutation had a



www.manaraa.com

43

Table 4.4: GP Configurations

Parameter Value
Evaluations 5000

Initial Population 100
Children per Generation 40

k-Tournament 8
Sub-Tree Crossover Probability 30%
Sub-Tree Mutation Probability 30%
Alternate Mutation Probability 40%

Alternate Mutation Depth 5
Parsimony Pressure 0.001

Maximum Operations 5,000,000
Maximum Iterations 10,000

Maximum Evaluations in BBSA 100,000

probability of 40%. The parsimony pressure for the tree size was 0.001. The maximum

number of operations the BBSAs could use was 5,000,000, the maximum number

of iterations was 10,000, and the maximum number of evaluations in the BBSA

was 100,000. All the parameter settings for the meta-algorithm are summarized in

Table 4.4. Due to the high computational cost of running hyper-heuristics, only

minimal tuning of the meta-algorithm is feasible.

For the generation of the BBSAs, heuristic constraints were employed to limit

various parameters to reasonable values. The maximum number of individuals in

the initial population was set to 50. The range of individuals selected by selection

nodes was set to be from 1 to 25 inclusive. The range of the k value used for the k-

tournament is from 1 to 25 inclusive. The range of the number of points for diagonal

crossover is from 1 to 25 points inclusive. All the parameter settings for the BBSA

are summarized in Table 4.5.



www.manaraa.com

44

Table 4.5: Black-Box Search Algorithm Settings

Parameter Value
Runs per Problem Configuration 5

Maximum Initial Population 50
k Value Range [1,25]

Number of Selected Individuals Range [1,25]
Crossover Points Range [1,25]

Randomly Generated Set Size Range [1,25]
Children for Uniform Recombination Range [1,25]

Figure 4.4: The worst BBSA found for multi-sampling level one run on the problem
configuration space.



www.manaraa.com

45

Figure 4.5: The worst BBSA found for multi-sampling level two run on the problem
configuration space.



www.manaraa.com

46

Figure 4.6: The worst BBSA found for multi-sampling level three run on the problem
configuration space.



www.manaraa.com

47

Figure 4.7: The worst BBSA found for multi-sampling level four run on the problem
configuration space.



www.manaraa.com

48

Figure 4.8: The worst BBSA found for multi-sampling level five run on the problem
configuration space.



www.manaraa.com

49

Figure 4.9: A standard EA run on the problem configuration space.



www.manaraa.com

50

5 RESULTS

The first experiment’s results are summarized in Table 5.6. This table shows

the fitness of the BBSAs at the end of evolution labelled as the ‘Training Fit.’. The

‘Test Fit.’ is the averaged fitness across the testing set of problem configurations

shown in Table 4.2. The ‘Fallibility’ field is the difference between the best and worst

performing problem configuration for a given BBSA. As this number decreases, the

BBSA can be said to be a more robust algorithm.

The comparison between the EA and the evolved BBSAs is shown in Ta-

ble 5.7. The − column represents the number of problem configurations that the EA

performed better on than the BBSA. The ∼ column represents the number of prob-

lem configurations that there was no statistical difference between the EA and the

BBSA. The + column represents the number of problem configurations that the EA

perform worse on than the BBSA. The t-test with α = 0.05 was used to determine

the statistically better algorithm.

To study the effect of multi-sampling on the performance landscape across a

wide set of problem configurations, 3-dimensional plots were generated that represent

the quality of solutions that can be found using different problem configurations.

Figures 4.4-4.8 show the least robust BBSA evolved at each multi sampling level.

Figure 4.9 shows the baseline of a standard EA. These plots were generated averaging

over five runs on each problem configuration.



www.manaraa.com

51

Table 5.6: BBSA Experimental Results

Level Run Train Fit. Test Fit. Fallibility
1 1 1.0 0.976 0.094
1 2 1.0 0.999 8.33 E-3
1 3 0.944 0.883 0.082
1 4 0.976 0.894 0.224
2 1 0.997 0.996 0.023
2 2 0.992 0.959 0.130
2 3 0.966 0.970 0.054
2 4 0.979 0.947 0.120
3 1 0.965 0.966 0.050
3 2 0.984 0.980 0.065
3 3 0.899 0.886 0.059
3 4 0.926 0.898 0.073
4 1 0.976 0.999 5.00 E-3
4 2 0.973 0.969 .0903
4 3 0.982 0.975 0.059
4 4 0.993 0.999 5.00 E-3
5 1 0.973 0.977 0.050
5 2 0.893 0.879 0.035
5 3 0.850 0.850 0.045
5 4 0.955 0.986 0.029



www.manaraa.com

52

Table 5.7: This table is a summary of the comparison of the evolved BBSA and the
standard EA.

Level Run + ∼ −
1 1 11 0 0
1 2 11 0 0
1 3 11 0 0
1 4 6 2 3
2 1 11 0 0
2 2 11 0 0
2 3 11 0 0
2 4 11 0 0
3 1 11 0 0
3 2 11 0 0
3 3 11 0 0
3 4 11 0 0
4 1 11 0 0
4 2 11 0 0
4 3 11 0 0
4 4 11 0 0
5 1 11 0 0
5 2 10 1 0
5 3 7 4 0
5 4 11 0 0



www.manaraa.com

53

6 DISCUSSION

The goal of the research reported in this paper is to show that increasing

the multi-sampling level increases the robustness of the generated BBSAs. The two

measurements of robustness that we chose to use were applicability and fallibility.

Applicability is the size of the problem configuration space in which the BBSA per-

formed higher than a given threshold value. Fallibility is the difference between the

best and worst performing problem configuration. As the applicability increases,

and the fallibility decreases the robustness of the BBSA would increase. The results

presented show that both of these happen as the multi-sampling level is increased.

T-tests were run on the selected testing problem configurations, the results of

which are shown in Table 5.7. It can be seen that one of the BBSAs that was evolved

with multi-sampling level one performed worse than the EA. From a practitioner’s

standpoint, this result would seem very surprising compared to its trained fitness.

The runs of multi-sampling level five performed consistent with the trained fitness

when compared to the EA.

Figure 4.4 shows the performance of the least robust BBSA found using multi-

sampling level one when run on a wide variety of problem configurations. As can be

seen, the BBSA performs well in the immediate area around the problem configuration

that it was trained on (k = 5, bit − length = 100). Unsurprisingly, as the problem

configuration gets farther away from the trained problem configuration, the fitness

decreases. This algorithm performs similarly to other algorithms that are tuned to

specific problem configurations. When compared to how the EA performs on the

same problem configuration space in Figure 4.9, the BBSA outperforms the EA in

problem configurations near the trained problem configuration, but performs at near

the same level as the distance increases. As can be seen in figures 4.4-4.8, the variance

in performance of the algorithm decreases as the multi-sampling level increases.

It is widely known that training an BBSA on a larger number of training

problem configurations will improve the performance of the BBSA. However in most



www.manaraa.com

54

cases, the improved performance is restricted to problem configurations that are

relatively close to the trained problem configurations. These results will look similar

to the results shown in Figure 4.4 where near the trained problem configuration the

BBSA performs well, but as the problem configuration differs more from the trained

problem configuration, the BBSA performs poorly.

However, when multi-sampling is done during the generation of the algorithm

rather than solely the parameter tuning, the increased performance of the algorithm

can be generalized to larger portions of the problem configuration space. As can can

be seen in figures 4.4-4.8, the fallibility decreases as the multi-sample level increase.

Note that the training sets that these algorithms were generated on had k from 5 to

7 and a bit − length from 100 to 300 and the problem configuration space shown in

figures 4.4-4.8 includes a k from 4 to 20 and a bit− length from approximately 75 to

500. This demonstrates the enhanced robustness of the BBSAs evolved with a higher

multi-sampling level. This robustness is more superior to that of strictly parameter

optimization of a BBSA due to its ability to generalize to problem configurations

much different to those trained on.

There was a case in which a BBSA evolved with a multi-sampling level of one,

when tested, was shown to be robust. As in previous work [19], there is always the

potential of producing a robust algorithm trained on a single sample; however, this

is highly unreliable and the method introduced in this paper significantly increases

the probability of evolving a robust BBSA.

One drawback of this method is the increased computational time that it

requires. One cause of this increase are the additional runs that are necessary during

the evaluation of a given BBSA. This extra computational time increases linearly with

the multi-sampling level. It was noticed during testing and in the final results that

the experiments run at a higher multi-sampling level can have a lower average fitness.

Due to this result, it a trend in the applicability is not statistically discernible. As

is shown in Table 5.6, the BBSAs evolved at multi-sampling level five had the lowest



www.manaraa.com

55

trained fitness. This is believed to be caused by the increased difficulty of finding

an algorithm that performs well on all of the training problem configurations. These

two aspects cause the computational time increase of Ω(L), with L being the multi-

sampling level.



www.manaraa.com

56

7 CONCLUSIONS

The research reported in this paper demonstrates that employing the proposed

multi-sampling method, tends to increase the robustness of evolved BBSAs. This

method is shown to not only to generate BBSAs that generalize to the problem

configuration space close to the trained problem configurations, but to create BBSAs

that have generalized to a much wider area of the problem configuration landscape.

Though it is possible to evolve robust algorithms without using the multi-sampling

method, it is shown that with a higher multi-sampling level, the general robustness

of the evolved BBSA is increased along with the certainty that the evolved BBSA

will indeed be robust.

The predominant disadvantage to this method is the increased computational

time that is necessary to evolve high-performance BBSAs when using high multi-

sampling levels. However, it is shown that it is possible to evolve high-performance

BBSAs when using high multi-sampling levels that are also robust as shown in Ta-

ble 5.6.



www.manaraa.com

57

8 FUTURE WORK

The next step to improve upon the proposed approach is to do run-time anal-

ysis of the BBSAs. This will help reveal what features cause the BBSAs to run slower

compared to others. This allows the computational time necessary for running with

a higher multi-sampling level to decrease which will make this approach more feasible

for practitioners.

This multi-sampling approach also needs to be tested on a larger variety of

problem classes to better understand how the multi-sampling level affects the robust-

ness of evolved BBSAs. A larger variety of node operations may have to be added

to allow this approach to create well-performing BBSAs. As well as testing this ap-

proach on other problem classes, an in depth study should be conducted to determine

the correlation between the proximity of the training classes and the robustness of

the resulting BBSAs.

Finally, multi-objective optimization should be introduced into the meta-

algorithm such that it is capable of creating BBSAs that are not only robust, but

quick to converge as well. This is necessary to enable the proposed method to evolve

human-competitive BBSAs.



www.manaraa.com

58

III. HYPER-HEURISTICS: A STUDY ON INCREASING
PRIMITIVE-SPACE

Matthew A. Martin, and Daniel R. Tauritz

Natural Computation Laboratory

Department of Computer Science, Missouri University of Science and Technology,

Rolla, MO 65409

ABSTRACT

Practitioners often need to solve real world problems for which no custom

search algorithms exist. In these cases they tend to use general-purpose solvers that

have no guarantee to perform well on their specific problem. The relatively new field

of hyper-heuristics provides an alternative to the potential pit-falls of general-purpose

solvers, by allowing practitioners to generate a custom algorithm optimized for their

problem of interest. Hyper-heuristics are meta-heuristics operating on algorithm

space employing targeted primitives to compose algorithms. This paper explores

the advantages and disadvantages of expanding a hyper-heuristic’s primitive-space

with additional primitives. This should allow for an increase in quality of evolved

algorithms. However, increasing the search space of a meta-heuristic almost always

results in longer time to convergence and lower quality results for the same amount of

computational time, but also all too often lower quality results at convergence, poten-

tially making a problem impractical to solve for a practitioner. This paper explores

the scalability of hyper-heuristics as the primitive-space is increased, demonstrating



www.manaraa.com

59

significantly increased quality solutions at convergence with a corresponding increase

in convergence time. Additionally, this paper explores the impact that the nature of

the added primitives have on the performance of the hyper-heuristic.



www.manaraa.com

60

1 INTRODUCTION

Practitioners are frequently faced with increasingly complex problems for

which no polynomial time, guaranteed optimal solvers exist and for which off-the-shelf

general-purpose solvers, whether they be deterministic or stochastic, do not provide

satisfactory performance. When these problems need to be repeatedly solved, it may

be cost-effective to create a custom algorithm which, unlike general-purpose solvers,

does not trade off performance on specific problems for generality. Hyper-heuristics

are meta-heuristic algorithms which search algorithm-space employing primitives typ-

ically derived from existing algorithms, automating the creation of custom algorithms.

The highest possible level primitives are complete algorithms, while the lowest pos-

sible level are a Turing-complete set of primitives. The former translates into auto-

mated algorithm selection, while the latter results in an intractable search of complete

algorithm space (which grows exponentially with the number of operations). In order

to minimize the search space, the highest primitive level which is sufficient to rep-

resent the optimal custom algorithm is ideal. However, determining that level is an

open problem in hyper-heuristics. Additionally, adding primitives to an existing level

increases the search space, thus increasing coverage at the expense of computational

time.

This paper explores the advantages and disadvantages of increasing the search

space of a hyper-heuristic by expanding its primitive space. The study reported here

analyzes the performance of a hyper-heuristic, which has been previously demon-

strated to produce high-quality Black-Box Search Algorithms (BBSAs) for the De-

ceptive Trap Problem [19, 20], on a more complex benchmark which has the necessary

characteristics in order to reveal nuances in the trade-off between search space size

(smaller is preferable) and coverage (larger is preferable).

This paper also examines how the nature of the added primitives impacts the

performance of the evolved BBSAs. Two distinct sets of primitives are added to

the previously employed set of primitives. One set comprises low-level “statement



www.manaraa.com

61

primitives” in the form of a set of “auxiliary” nodes that control program flow, such

as loops and branching statements. The second set comprises “derived primitives”

extracted from existing algorithms such as Simulated Annealing and Steepest Ascent

Hill-Climber. How the nature of the primitives affects the trade-off between increased

search space and higher quality BBSAs is explored.

The goal of this research is to demonstrate that while adding primitives to a

hyper-heuristic’s primitive space increases the search space, which requires additional

time to convergence, it also increases the total number of high-quality algorithms

produced, as well as increasing the quality of the best evolvable algorithms.



www.manaraa.com

62

2 RELATED WORK

Recent efforts have applied hyper-heuristics to problems such as the Timetabling

Problem [23], bio-informatics [24], and multi-objective optimization [25]. Much of the

previous work on employing evolutionary computing to create improved BBSAs has

focused on tuning parameters [4] or adaptively selecting which of a pre-defined set of

primitives to use and in which order [5]. The latter employed Multi Expression Pro-

gramming to evolve how, and in what order, the Evolutionary Algorithm (EA) used

selection, mutation, and recombination. This approach used four high level prim-

itives: Initialize, Select, Crossover, and Mutate. These primitives were combined

in various ways to evolve a better performing EA. Later this approach was also at-

tempted employing Linear Genetic Programming [6, 7, 8]. While this allowed the EA

to identify the best combination of available selection, recombination, and mutation

primitives to use for a given problem, it was limited to a predefined structure.

A more recent approach to evolving BBSAs employed Grammatical Evolu-

tion (GE) [9] which uses a grammar to describe structure, but was constrained to the

primitives of the canonical EA model. In later work [21], due to the computational

load necessary for evaluating algorithms, a study was presented on how restricting

the computational time for evaluating the evolved algorithms affects the structure.

Burke et al. described a high-level approach to evolving heuristics [22]. That

approach was extended to evolve entire BBSAs of indiscriminate type [19, 26]. The

research in this paper builds upon this work by analyzing the advantages and dis-

advantages of increasing the primitive-space the hyper-heuristic has access to. This

paper will also look at how the nature of the added primitives affects the performance

of the hyper-heuristic. This analysis is similar to an effort to determine the effect

of varying primitive sets has on the performance of selection hyper-heuristics [27],

though expanded to a generic hyper-heuristic.



www.manaraa.com

63

3 METHODOLOGY

The focus of the research reported in this paper is to demonstrate the ability

of hyper-heuristics to scale as the number of primitives available is increased. In-

creasing the number of primitives available to a hyper-heuristic potentially allows it

to create higher quality algorithms and tackle more difficult problems. This section

will discuss the base hyper-heuristic employed in the reported experiments along with

the expanded set of primitives given to the hyper-heuristic to show its scalability.

3.1. PARSE TREE

In order to condense the quantity of code needed to be evolved, the common

iterative nature of BBSAs is exploited by representing a single iteration of a BBSA

rather than the entirety of the algorithm. A parse tree is used to represent the

iteration for the evolutionary process such that standard Genetic Programming (GP)

primitives will work effectively.

Each non-terminal node will take one or more sets of solutions (including the

empty set or a singleton set) from its child node(s), perform a primitive on the sets(s)

and then return a single set of solutions. The parse tree is evaluated in a post-order

fashion and the set that the root node returns will be stored as the ‘Last’ set which can

be accessed in future iterations to facilitate population-based BBSAs. The terminal

nodes can either be sets of previous solutions or a set of randomly generated solutions.

The sets include the ‘Last’ set as well as auxiliary sets which will be explained in

Section 3.2.6. Examples of a BBSA represented both as a parse tree and as source

code are shown in Figure 3.1 and Figure 3.2 respectively.

3.2. NODES

The trees’ non-terminal nodes are primitives extracted from existing algo-

rithms such as Evolutionary Algorithms, Simulated Annealing (SA), and Steepest

Ascent Hill-Climbing (SAHC). The nodes are broken down into selection, variation,

set-manipulation, terminal, and utility nodes. The following subsections describe the

primitives of each type employed in the experiments reported in this paper.



www.manaraa.com

64

Figure 3.1: Example Parse Tree

Last = [initialize population]
evaluate(Last)
A = [ ]
while termination condition not met do

X = kTournament(Last, k = 5,count =25)
A = X
Y = randInd(count = 5)
Y = A + Y
Y = kTournament(Y,k = 10, count = 15)
Y = uniformRecombination(Y, count = 15)
Z = X+Y
Z = mutate(Z, rate = 5%)
evaluate(Z)
Last = truncate(Z, 24)

end while
evaluate(Last)

Figure 3.2: Example Parse Tree Generated Code



www.manaraa.com

65

3.2.1. Typing. Many BBSA primitives were designed to perform on a spec-

ified number of solutions. Typically in EAs, only two solutions are used for recom-

bination. To allow for nodes to have requirements on the number of solutions that

are passed, typing was added to the GP. In addition to the regular sets that have

been employed previously, a singleton set type has been added. While the regular

set type may be a singleton in some cases, the singleton set type must be a singleton

set. Thus if a node needed two solutions, it would have two child nodes that each

have the requirement to return the singleton set type. Some nodes can return either

the regular set type or the singleton set type depending on which is needed. These

situations are described in Section 3.3. In addition to the added flexibility that typ-

ing allows, it can also be used to limit the solution set size. Certain primitives can

cause the size of the solution sets to increase exponentially if they were applied to a

non-singleton set. For instance, if multiple ‘Generate Neighborhood’ primitives were

chained together without a selection primitive between them, the resulting set would

grow exponentially. By forcing the ‘Generate Neighborhood’ node to take a singleton

set, the size of the resulting set is limited.

3.2.2. Selection Nodes. Three principal selection primitives were employed

in the experiments. The first of these is k-tournament selection with replacement.

This node has two parameters, namely k, the tournament size, and count which desig-

nates the number of solutions passed to the next node. The second selection primitive

employed is truncation selection. This primitive takes the count best solutions from

the set passed to it. The third selection primitive employed is the random subset

primitive which takes count random solutions from the set passed to it. All of the

selection nodes take the regular set type and can either return the singleton set type

or the regular set type.

3.2.3. Variation Nodes. The original hyper-heuristic used only three types

of variation primitives. The first of which is standard bit-flip mutation. This primitive

has a single argument, rate, which is the probability that a given bit is flipped. The



www.manaraa.com

66

second original variation primitive is diagonal crossover [16], which returns the same

number of solutions as are passed in. This variation node has one parameter, n,

which determines the number of points used by the crossover primitive. The third

original variation primitive is standard uniform recombination, which has one child

node and returns a regular set type. It has a single argument, count, which is the

number of solutions that it creates by randomly selecting a parent’s gene for each

position in the bit string.

The new version of the hyper-heuristic reported in this paper, employs all

three the original variation primitives, and adds a fourth one, namely a second uni-

form recombination primitive which has two child nodes and requires that each of

them return a singleton set type. This primitive creates two new solutions using the

standard two-parent uniform recombination. Both uniform recombination primitives

return a regular set type. The second uniform recombination primitive was added to

determine if a typed variation primitive would be more useful than a generic variation

primitive.

Additional primitives were added to the set of primitives to analyze how in-

creasing the number of primitives from existing BBSAs affects the performance of

the hyper-heuristic. From the SA algorithm two primitives were extracted. The first

is the ‘tempChange’ primitive, which modifies the temperature parameter for the SA

algorithm. The temperature parameter is stored at the global level such that all

nodes have access to the same temperature. This primitive has a single parameter,

change, which dictates how the temperature is changed when the node is called. This

parameter is a floating point number which is added to, or subtracted from, the cur-

rent temperature. The initial temperature is set to a constant value for each run of

the BBSA. The second primitive from the SA algorithm is named ‘tempFlip’ which

performs the SA variation primitive based on the current global temperature. Both

of these nodes can take either a singleton or regular set and return the same set that

they are passed. There were also two primitives taken from the SAHC algorithm.



www.manaraa.com

67

The first is the ‘greedyFlip’ primitive. This primitive takes a singleton set and per-

forms one step of SAHC by generating the neighborhood of the solution passed in

and selecting the best solution from the neighborhood or the original individual and

returns it as a singleton set. The second primitive is the ‘Generate Neighborhood’

function. This function takes a singleton set and generates the neighborhood of that

individual and then returns the neighborhood and the original solution as a regular

set. The neighborhood is defined by all solutions that vary by exactly one bit.

3.2.4. Utility Nodes. The original hyper-heuristic used only one utility

primitive. This was the evaluation node which evaluates all of the solutions that

are passed into it. This node can take either a singleton set type or a regular set type

and returns the same type that was passed to it.

The following primitives are added to the set of primitives to analyze how

increasing the number of utility primitives affects the performance of the hyper-

heuristic. The first is the ‘for’ loop which runs its sub-tree n times, n being one of its

parameters, and returns the combination of the results from those iterations. This

node requires that its sub-tree return a singleton set type and it returns a regular set

type. The second utility primitive is a conditional node called “if converged”. If the

current run of the BBSA has not found a better solution in conv iterations, conv being

one of its parameters, it will run its right sub-tree, else it will run its left sub-tree.

This node also has the option to reset the convergence counter to zero giving it the

option to be run a single time at convergence. This node can take either the regular

set type or the singleton set type and returns a regular set type. The final utility

primitive is another conditional node that runs its right sub-tree chance percent of

the time, chance being one of its parameters, and its left sub-tree 1− chance percent

of the time. This node can take either the regular set type or the singleton set type

and returns a regular set type.

3.2.5. Set-Manipulation Nodes. The experiments reported in this paper

employ two distinct set primitives. The first is the union primitive. This node



www.manaraa.com

68

combines the two sets of solutions passed into it and returns it. This node can take

either the regular set type or the singleton set type. It always returns a regular set

type. The other primitive is the save primitive called “Make Set”. This primitives

saves either copies or pointers to the solutions passed into it. This set can be used

elsewhere in the algorithm as explained in Section 3.2.6. This node can take either

the regular set type or the singleton set type and returns the same type that it was

passed.

3.2.6. Terminal Nodes. The terminal nodes in this representation are sets

of solutions. They can either be the ‘Last’ set returned by the previous iteration, a

set that was created by the save primitive, or a set of randomly created solutions.

The saved sets persist from iteration to iteration such that if a set is referenced before

it has been saved in a given iteration, it will use the save from the previous iteration.

At the beginning of each run, the saved sets are set to the empty set and the ‘Last’ set

is set to a randomly generated population of solutions. Both of these terminal nodes

return a regular set type. The terminal that generates a random set of solutions

creates a set of n solutions, n being one of its parameters, and returns that to its

parent node. This terminal node can return either a singleton set type or a regular

set type.

3.3. META-ALGORITHM

GP is employed to meta-evolve the BBSAs. The two primary variation primi-

tives employed are the sub-tree crossover and mutation, altered to make the maximum

number of nodes being added a user defined value. Both of these primitives had to

be modified to account for the typing that was introduced into the GP. The sub-tree

crossover was modified to ensure that the two sub-trees that were crossed over both

returned the same type of set. In the rare situation that one tree used only the single-

ton set type and the other tree used only the regular set type, the alternate mutation

described below is used on one of the trees chosen randomly. The sub-tree mutation

was altered to ensure that when a node was added that it was guaranteed to have



www.manaraa.com

69

the return type that its parent node needed. Another mutation primitive was added

to this algorithm that with equal chance randomizes the size of the initial ‘Last’ set

or selects a random node from the parse-tree and randomizes the parameters if it

has any; if the node does not have any parameters, the mutation is executed again.

The alternate mutation primitive is guaranteed not to change the type of a node that

returns a singleton set type.

The evaluation time of the evolved BBSAs is tied to the certainty in the fitness

of the BBSA as well as the generality of the BBSA. To increase the certainty in the

fitness of the BBSA the number of runs must be increased. To reduce the probability

of a BBSA over-fitting during evolution, the BBSA must be trained using multiple

problem configurations. Thus, to create a better BBSA, more time must be invested

in the evaluation of the BBSAs.

This large evaluation time can cause the hyper-heuristic to run extremely

slow. To remedy this problem, a Parallel Evolutionary Algorithm (PEA) strategy

was adopted to allow for the evaluations to be distributed across multiple machines.

To ensure the most efficient use of the computing resources, an Asynchronous PEA

was used [28]. The Asynchronous PEA uses a master-slave model in which the master

node generates new BBSAs to be evaluated and the slave nodes evaluate those BBSAs.

Using this Asynchronous PEA the speed-up granted from the additional CPUs is near

linear [28].

3.3.1. Black-Box Search Algorithm. Each individual in the GP popula-

tion encodes a BBSA. To evaluate the fitness of an individual, its encoded BBSA is

run for a user-defined number of times on each of a set of problem configurations.

Each run of the BBSA begins with population initialization, followed by the parse-

tree being repeatedly evaluated until one of the termination criteria is met. Once

a run of the BBSA is completed, the ‘Last’ set and all saved sets are evaluated to

ensure that the final fitness value is representative of the final population. Logging is

performed during these runs to track when the BBSA converges and what the average



www.manaraa.com

70

solution quality and best current solution is. The fitness of a BBSA is estimated by

computing the fitness function that it employs on the solutions it evolves averaged

over all of the runs.

Learning conditions were added to terminate poor solutions before they are

fully evaluated in order to ameliorate the very computationally intensive nature of

hyper-heuristics. This is accomplished by applying four limiting factors. First of all,

if a BBSA exceeds the maximum number of evaluations, then it will automatically

be terminated mid-run. Secondly, there is a maximum number of iterations that

the BBSA may perform before it will halt. If this iteration limit were not put in

place, it would take BBSAs with very low evaluations per iteration much longer to

be evaluated. The third method terminates algorithms which have converged based

on not having improved in i iterations. Finally, if the algorithm requires more than

t seconds it is terminated and given no fitness. This is done to help ensure that

algorithms evolved complete their execution in a reasonable amount of time.

3.4. EXTERNAL VERIFICATION

To ensure that the performance of the evolved BBSA is consistent with its

performance reported during evolution, executable code is generated to represent

the parse tree as a stand-alone BBSA. This is done to verify external to the hyper-

heuristic system employed, that the performance that the GP reports for a given

BBSA is accurate. The generated code is used in all of the experiments to ensure

unbiased execution of the BBSAs. An example of a parse tree and pseudo-code

generated can be found in Figure 3.1 and Figure 3.2 respectively. This verification

was employed for the testing of the BBSAs in all experiments.



www.manaraa.com

71

Table 3.1: Primitive Breakdown

Base Primitives +Algorithms +Utility Full

Bit-Flip Mutation Base Primitives Base Primitives Base Primitives
Uniform Recombination Change Temperature For Loop +Algorithms

Uniform Recombination(Typed) SA Variation If Converge +Utility
Diagonal Recombination Greedy Flip Left or Right

Union Generate Neighborhood
Make Set

k-Tournament Selection
Truncation Selection

Random Subset
Evaluation Node

Random Individual Terminal
‘Last’ set Terminal

Persistent set Terminal



www.manaraa.com

72

4 EXPERIMENTS

To analyze how the addition of more primitives affects the performance of the

hyper-heuristic, four sets of experiments were performed. The first ran the base hyper-

heuristic without the addition of any primitives. The second ran the hyper-heuristic

with the addition of the nodes extracted from the SA and SAHC algorithms. The

third ran the hyper-heuristic with the addition of the utility primitives. The fourth

ran the hyper-heuristic with the addition of all of the new primitives. A summary of

the primitives that are included in each of the experiments can be seen in Table 3.1

The data used to determine the presence of these characteristics was gathered

from running the single and multi-objective algorithms 30 times each. All four sets

of experiments were run using three different sets of three instances of the NK-

Landscapes benchmark problem [29] each. The parameters of these three sets can

be seen in Table 4.2. These parameters were chosen to be consistent with a recent

publication using NK-Landscapes [30]. The data used to analyze the scalability of

this hyper-heuristic was gathered by running each problem configuration 10 times.

Once all 10 runs were completed, external verification was run on the best BBSA

produced by each run. During the external verification, each BBSA was run 30 times

for 100,000 evaluations or until convergence.

Table 4.2: Problem Configurations

Problem Set N K
Set 1 30 5
Set 2 40 5
Set 3 50 5

All of the experiments were conducted under the same settings. The meta-

algorithm was run for 5000 evaluations. The initial population consisted of 100

individuals and each generation 50 new individuals were created. k-tournament se-

lection with replacement and k = 8 was employed for parent selection. The sub-tree



www.manaraa.com

73

Table 4.3: GP Configurations

Parameter Value
Evaluations 5000

Runs per Problem Instance 5
Initial Population 100

Children per Generation 50
k-Tournament 8

Sub-Tree Crossover Probability 47.5%
Sub-Tree Mutation Probability 47.5%
Alternate Mutation Probability 5%

Alternate Mutation Depth 5
Maximum Time(sec) 90
Maximum Iterations 10,000

Maximum Evaluations in BBSA 100,000

crossover and mutation primitives had 30% chance of being used while the alternate

mutation had a probability of 40%. The maximum time for the evaluation of a BBSA

was 90 seconds, the maximum number of iterations was 10,000, and the maximum

number of evaluations in the BBSA was 100,000. The meta-algorithm parameter

settings are summarized in Table 4.3. Due to the high computational cost of running

hyper-heuristics, only minimal tuning of the meta-algorithm was feasible.

The BBSAs had certain parameters that related to the ranges of the param-

eters that some nodes have. Each of the integer parameters ranged from 1 to 25,

except for the convergence conditional node which ranged from 5 to 25. The bit-flip

mutation nodes parameter rate ranged from 0 to 1.0. The floating point parameter

on the ‘tempChange’ node ranged from -3.0 to 3.0. The initial population ranged

from 1 to 50 solutions. A detailed list of all of the parameter ranges is shown in

Table 4.4.



www.manaraa.com

74

Table 4.4: Black-Box Search Algorithm Settings

Node Parameter Range
N/A Initial Population [1,50]

k-Tournament k [1,25]
* count [1,25]

Random Subset count [1,25]
Truncation count [1,25]

Bit-Flip rate [0,1]
Uniform Recombination count [1,25]
Diagonal Recombination points [1,25]

Change Temperature change ,[-3,3]
If Converge conv [5,25]

Left or Right rate [0,1]
For loop iterations [1,25]

Random Individuals count [1,25]



www.manaraa.com

75

5 RESULTS

The first results gathered were to determine if there was a significant im-

provement in fitness of the BBSAs when additional operations were added to the

hyper-heuristic. To determine this, the Wilcoxon signed-rank test was performed

to determine if a statistical difference existed. In all of these tests α was set to be

0.05. The results of these tests can be seen in Table 5.5. This table shows how a

given set of primitives compared to another. Each entry is a tuple of symbols that

convey the relationship between the performance of the experiments on the three

problem configurations (N = 30, N = 40, N = 50). A + symbol indicates that

the experiment on the row performed statistically better than the experiment in the

column on a given problem configuration. A − symbol indicates that the experiment

on the row performed statistically worse than the experiment in the column on a

given problem configuration. A ∼ symbol indicates that there was no statistical dif-

ference between how the two experiments performed. A X indicates that this entry

is duplicate information found elsewhere on the table.

Table 5.5: Rank-Sum Results of Experiment Comparison

Base +Utility +Algorithm
+Utility (∼,∼,+) X X

+Algorithm (+,+,+) (+,+,∼) X
+Full (+,+,+) (+,+,∼) (+,∼,∼)

The box-plots in figures 5.3 through 5.5 provide a visual comparison of the

experiments. The impact of the difficulty of the problem configuration on the differ-

ent experiments is visualized in Figure 5.6. The performance of the hyper-heuristic

decreases as N is increased, which is to be expected as increasing N increases the

difficulty of the problem configuration.



www.manaraa.com

76

Figure 5.3: This figure shows a box-plot of the four experiments with n = 30, where
the labels along the x axis correspond to the experiments described in
Table 3.1



www.manaraa.com

77

Figure 5.4: This figure shows a box-plot of the four experiments with n = 40, where
the labels along the x axis correspond to the experiments described in
Table 3.1



www.manaraa.com

78

Figure 5.5: This figure shows a box-plot of the four experiments with n = 50, where
the labels along the x axis correspond to the experiments described in
Table 3.1



www.manaraa.com

79

Figure 5.6: Graph of the trend of the four experiments as the problem configurations
increases in difficulty



www.manaraa.com

80

6 DISCUSSION

An important trade-off, when analyzing how the increase in genetic material

of a hyper-heuristic, is that between the average performance of the BBSAs and the

size of the search space. The the size of the search space can be approximated by

variance of the distribution of BBSA fitnesses. The larger the variance is, the larger

the search space is. Obviously the larger the mean fitness is the better the hyper-

heuristic can perform; however, if the variance of the distribution of BBSAs is large,

this indicates that the search space may be much too large to easily traverse.

This assumption can be reinforced by analyzing the differing results between

adding utility primitives versus algorithmic primitives. The algorithmic primitives

that were included were all unary primitives, and two of the three utility primitives

were binary primitives. This means that the increase in search space caused by

adding the utility primitives was much more significant than the increase caused by

adding the algorithmic primitives. This is supported when analyzing the results of

the experiments in figures 5.3 through 5.5. The best BBSA found in the ‘+Utility’

experiments were on par with the best BBSAs found in the ‘+Algorithm’ experiments.

However, the difference between best and worst BBSAs is much larger in the ‘+Utility’

experiments likely due to the greater increase in search space. This is reinforced when

including the ‘Full’ experiments in this analysis. The ‘Full’ experiments had a larger

difference between best and worst BBSAs

While the increase in search space caused by the increase in genetic material

does increase the difficulty in finding good BBSAs, the quality of the best BBSA found

does increase when using more genetic material compared to the ‘Base’ experiment.

In all problem configurations, the best BBSA found in experiments ran with more

genetic material performed better than the best BBSA found in the ‘Base’ experiment.

This helps the argument that increasing the genetic material does indeed allow for

the hyper-heuristic to find better BBSAs.



www.manaraa.com

81

The difficulty of the problem configuration did not uniformly affect the per-

formance of the hyper-heuristic. As can be seen in Figure 5.6, as the difficulty of the

problem configuration was increased, the performance of each experiment decreased

which was expected. However, the performance of the ‘+Util’ experiment did dras-

tically increase in relationship to the other three experiments. This result, however,

could not be explained and may be caused solely by the inherent randomness in

hyper-heuristics.



www.manaraa.com

82

7 CONCLUSIONS

This paper is a first investigation of the effects that the amount and nature of

genetic material has on the performance of hyper-heuristics. Expanding the amount of

genetic material increases the chance that the genetic material of the global optimal

solution can be represented. However, this also enlarges the search space which

makes it more difficult to find the most optimal representable solution. In the cases

examined, this trade-off was beneficial as the hyper-heuristic was able to find more

optimal solutions when provided with additional genetic material. If at some point

this trade-off no longer is beneficial, then reducing/partitioning the primitives may

become useful [31]. It was also found that the arity of the genetic material can have

a large impact on the increase in search space. It was seen that when primitives

with an arity of two were added, they caused a much larger increase in search space

compared to primitives with an arity of one.

The research reported in this paper does show that expanding the amount of

genetic material can cause scalability issues for hyper-heuristics, as additional run-

time is needed to converge. However, these experiments were run for only 5,000

evaluations, which is very short compared to the typical maximum number of eval-

uations employed by evolutionary algorithms. This restriction is driven by the high

computational cost of evaluating a BBSA. The use of parallel evolutionary algorithms

can drastically reduce the total run time, allowing for experimentation with higher

numbers of evaluations.



www.manaraa.com

83

8 FUTURE WORK

This paper has demonstrated the limitations of scaling the genetic material

in hyper-heuristics. The next step to better analyze these limitations is to do an in

depth study on how much longer hyper-heuristics need to be run to yield converging

results. However, if the results converge on non-optimal solutions, then the focus

should shift to increasing diversity. Other paths of research include a methodology

for creating lower level primitives from existing primitives. In this paper, primitives

were extracted from EAs, Simulated Annealing, and Steepest Ascent Hill-Climbers.

The same process of extracting primitives can be applied to other algorithms as well as

the primitives that we have already extracted. This process could be continued until

it yielded a Turing-Complete set of primitives which could then create all BBSAs.

However, the research in this paper shows that as the primitive set gets larger, it

becomes more difficult to find high quality BBSAs. The goal then would be to

identify the set of primitives with the optimal balance between coverage of high

quality BBSAs and minimizing the primitive search space.



www.manaraa.com

84

SECTION

2. CONCLUSIONS

This thesis introduces a Genetic Programming based Hyper-heuristic that can

evolve BBSAs that outperform canonical BBSAs for a given problem class. While

this hyper-heuristic uses the same primitives as these canonical BBSAs, it has the

ability to use these primitives much more effectively than the canonical BBSAs do

and bears little resemblance to them. By removing the human bias of attempting to

fit a BBSA into a category such as Genetic Algorithm, Evolutionary Programming,

or Evolutionary Strategies, the hyper-heuristic is able to create BBSAs that can

out-perform algorithms that fit nicely into these categories.

The multi-sampling method applied to this hyper-heuristic can drastically in-

crease the robustness of the evolved BBSAs. This method is shown to not only

generate BBSAs that generalize to the problem configuration space close to the train-

ing problem configurations, but to a much wider area of the problem configuration

landscape. This multi-sampling method, however, comes with an increase in compu-

tational time necessary to evolve high-performance BBSAs due to needing to evaluate

the BBSAs on multiple problem configurations during training. There is a trade-off

that exists between computational time in training and the probability of robustness

in the evolved BBSAs.

It is found that the amount and nature of the genetic material that a hyper-

heuristic has available to it can drastically affect the performance of the resulting

BBSAs.

Expanding the amount of genetic material (i.e., the set of primitives) increases

the chance that the optimal solution can be represented, but also causes the search

space to increase correspondingly. Given unlimited time and full coverage variation



www.manaraa.com

85

operations, this will in crease the expected performance of the evolved BBSAs. How-

ever, in practice time is severely limited, and therefore there is typically a trade-off

point beyond which it is not beneficial to expand the genetic material. The parity of

the genetic material can have a large impact on the increase in search space. It was

seen that when primitives with a parity of two were added, the search space increased

much more than when compared to primitives with a parity of one.

The results in this thesis show that the use of hyper-heuristics is a feasible

mean to create novel, high-performing BBSAs. When using hyper-heuristics the prac-

titioner needs no domain specific knowledge of the problem. The hyper-heuristic also

has no biases that would cause it to develop a sub-par BBSA as a human developer

might. This lack of bias truly allows it to develop novel BBSAs that can out-perform

canonical algorithms that are widely used.

2.1 LIMITATIONS

While this thesis has shown that hyper-heuristics can perform well on the

problems that were presented, hyper-heuristics have many limitations that presently

prevent them from creating human competitive BBSAs. One of the major limitations

of hyper-heuristics is their run-time. Hyper-heuristics can take an extremely long time

to run. This is caused by the necessity to run each BBSA many times to determine

the quality of the BBSA. Another limitation of hyper-heuristics is the availability of

genetic material for them to use. All of the genetic material that hyper-heuristics use

must be manually extracted from existing algorithms. While extracting high-level

primitives can be done more easily, extracting low-level primitives can be extremely

difficult for practitioners. Thirdly, hyper-heuristics can give no guarantee that the

performance of the resulting BBSAs be high quality. While hyper-heuristics will

always try to optimize the BBSAs it is evolving, it can not guarantee a priori if it can

represent a high-quality BBSA. Finally, the hyper-heuristic presented in this thesis

does not take into account the number of evaluations necessary to find a high-quality



www.manaraa.com

86

solution. This prevents the hyper-heuristic from creating truly human competitive

BBSAs.

2.2 FUTURE WORK

There is much research that can be done to help fix or mitigate the limitations

of this hyper-heuristic in its current state. To help mitigate the problem of long run-

times, hyper-heuristics can be parallelized. The third paper presented in this thesis

drastically improved the run-time of the hyper-heuristic through asynchronous par-

allelization. This asynchronous parallelization may have an affect on the population

due to the different population mechanics when compared to synchronous parlleliza-

tion techniques and analysis should be done of this affect. Another improvement

that could be done is developing a methodology for automatically creating primitives

from existing algorithms and primitives. This process would automatically decom-

pose high-level primitives to obtain lower-level primitives and then recompose these

primitives into novel higher-level primitives. This would reduce the strain on prac-

titioners and allow hyper-heuristics to more easily be used. To allow hyper-heuristic

to develop BBSAs that are human competitive, the hyper-heuristic would need to be

multi-objective where it would attempt to maximize the solution quality as well as

minimizing the number of evaluations necessary to find these high-quality solutions.



www.manaraa.com

87

BIBLIOGRAPHY

[1] D.H. Wolpert and W.G. Macready. No Free Lunch Theorems For Optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, Apr. 1997.

[2] A.E. Eiben and S.K. Smit. Parameter tuning for configuring and analyzing evo-
lutionary algorithms. Swarm and Evolutionary Computation, 1(1):19–31, 2011.

[3] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[4] S.K. Smit and A.E. Eiben. Comparing Parameter Tuning Methods for Evo-
lutionary Algorithms. In IEEE Congress on Evolutionary Computation, 2009.
CEC ’09, pages 399–406, May 2009.

[5] Mihai Oltean and Crina Grosan. Evolving Evolutionary Algorithms Using Multi
Expression Programming. In Proceedings of The 7th European Conference on
Artificial Life, pages 651–658. Springer-Verlag, 2003.

[6] Laura Dioşan and Mihai Oltean. Evolutionary Design of Evolutionary Algo-
rithms. Genetic Programming and Evolvable Machines, 10(3):263–306, Septem-
ber 2009.

[7] Laura Silvia Diosan and Mihai Oltean. Evolving Evolutionary Algorithms Using
Evolutionary Algorithms. In Proceedings of GECCO 2007 - Genetic And Evo-
lutionary Computation Conference, GECCO ’07, pages 2442–2449, New York,
NY, USA, 2007. ACM.

[8] Mihai Oltean. Evolving Evolutionary Algorithms Using Linear Genetic Pro-
gramming. Evol. Comput., 13(3):387–410, Sept. 2005.

[9] Nuno Lourenço, Francisco Pereira, and Ernesto Costa. Evolving Evolutionary
Algorithms. In Proceedings of GECCO 2012 - Genetic And Evolutionary Compu-
tation Conference, GECCO Companion ’12, pages 51–58, New York, NY, USA,
2012. ACM.

[10] Peter J. Angeline. Two Self-Adaptive Crossover Operators for Genetic Program-
ming. In Peter J. Angeline and Kenneth E. Kinnear, Jr., editors, Advances in
Genetic Programming, pages 89–109. MIT Press, Cambridge, MA, USA, 1996.

[11] Bruce Edmonds. Meta-Genetic Programming: Co-evolving the Operators
of Variation. CPM Report 98-32, Centre for Policy Modelling, Manchester
Metropolitan University, UK, Aytoun St., Manchester, M1 3GH. UK, Jan. 1998.

[12] Brian W. Goldman and Daniel R. Tauritz. Self-Configuring Crossover. In Pro-
ceedings of GECCO 2011 - Genetic And Evolutionary Computation Conference,
GECCO ’11, pages 575–582, New York, NY, USA, 2011. ACM.



www.manaraa.com

88

[13] John R. Woodward and Jerry Swan. The Automatic Generation of Mutation
Operators for Genetic Algorithms. In Proceedings of GECCO 2012 - Genetic
And Evolutionary Computation Conference, GECCO Companion ’12, pages 67–
74, New York, NY, USA, 2012. ACM.

[14] E. Smorodkina and D. Tauritz. Toward Automating EA Configuration: the
Parent Selection Stage. In IEEE Congress on Evolutionary Computation, 2007.
CEC ’07, pages 63–70, Sept. 2007.

[15] John Robert Woodward and Jerry Swan. Automatically Designing Selection
Heuristics. In Proceedings of GECCO 2011 - Genetic And Evolutionary Com-
putation Conference, GECCO ’11, pages 583–590, New York, NY, USA, 2011.
ACM.

[16] A. E. Eiben and Cees H.M. van Kemenade. Diagonal Crossover in Genetic
Algorithms for Numerical Optimization. Journal of Control and Cybernetics,
26(3):447–465, 1997.

[17] K. Deb and D. Goldberg. Analyzing Deception in Trap Functions. In Proceedings
of FOGA II: the Second Workshop on Foundations of Genetic Algorithms, pages
93–108, 1992.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Mul-
tiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[19] Matthew A. Martin and Daniel R. Tauritz. Evolving Black-box Search Algo-
rithms Employing Genetic Programming. In Proceeding of the Fifteenth Annual
Conference Companion on Genetic and Evolutionary Computation Conference
Companion, GECCO ’13 Companion, pages 1497–1504, New York, NY, USA,
2013. ACM.

[20] Matthew A. Martin and Daniel R. Tauritz. Multi-Sample Evolution of Robust
Black-Box Search Algorithms. In Proceeding of the Sixteenth Annual Conference
Companion on Genetic and Evolutionary Computation Conference Companion,
GECCO ’14 Companion, New York, NY, USA, 2014. ACM.

[21] Nuno Lourenço, Francisco Baptista Pereira, and Ernesto Costa. The Impor-
tance of the Learning Conditions in Hyper-heuristics. In Proceeding of the Fif-
teenth Annual Conference on Genetic and Evolutionary Computation Confer-
ence, GECCO ’13, pages 1525–1532, New York, NY, USA, 2013. ACM.



www.manaraa.com

89

[22] Edmund K. Burke, Mathew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender
Ozcan, and John R. Woodward. Exploring Hyper-heuristic Methodologies with
Genetic Programming. In ChristineL. Mumford and LakhmiC. Jain, editors,
Computational Intelligence, volume 1 of Intelligent Systems Reference Library,
pages 177–201. Springer, 2009.

[23] Jorge A Soria-Alcaraz, Gabriela Ochoa, Jerry Swan, Martin Carpio, Hector
Puga, and Edmund K Burke. Effective learning hyper-heuristics for the course
timetabling problem. European Journal of Operational Research, 238(1):77–86,
2014.

[24] Aleksandra Swiercz, Edmund K Burke, Mateusz Cichenski, Grzegorz Pawlak,
Sanja Petrovic, Tomasz Zurkowski, and Jacek Blazewicz. Unified encoding for
hyper-heuristics with application to bioinformatics. Central European Journal
of Operations Research, 22(3):567–589, 2014.

[25] Mashael Maashi, Graham Kendall, and Ender Özcan. Choice function based
hyper-heuristics for multi-objective optimization. Applied Soft Computing,
28:312–326, 2015.

[26] Matthew A. Martin and Daniel R. Tauritz. A Problem Configuration Study of
the Robustness of a Black-box Search Algorithm Hyper-heuristic. In Proceedings
of the 2014 Conference Companion on Genetic and Evolutionary Computation,
GECCO Comp ’14, pages 1389–1396, New York, NY, USA, 2014. ACM.

[27] M Mısır, Katja Verbeeck, Patrick De Causmaecker, and G Vanden Berghe. The
effect of the set of low-level heuristics on the performance of selection hyper-
heuristics. In Parallel Problem Solving from Nature-PPSN XII, pages 408–417.
Springer, 2012.

[28] Matthew A. Martin, Alex R. Bertels, and Daniel R. Tauritz. Asynchronous
Parallel Evolutionary Algorithms: Leveraging Heterogeneous Fitness Evalua-
tion Times for Scalability and Elitist Parsimony Pressure. In Proceeding of the
Seventeenth Annual Conference Companion on Genetic and Evolutionary Com-
putation, GECCO ’14 Companion, New York, NY, USA, 2015. ACM.

[29] Stuart A Kauffman and Edward D Weinberger. The NK model of rugged fitness
landscapes and its application to maturation of the immune response. Journal
of theoretical biology, 141(2):211–245, 1989.

[30] Brian W. Goldman and Daniel R. Tauritz. Supportive Coevolution. In Pro-
ceedings of GECCO 2012 Companion - Genetic And Evolutionary Computation
Conference, GECCO Companion ’12, pages 59–66, New York, NY, USA, 2012.
ACM.

[31] Stephen Remde, Peter Cowling, Keshav Dahal, Nic Colledge, and Evgeny Selen-
sky. An empirical study of hyperheuristics for managing very large sets of low
level heuristics. Journal of the operational research society, 63(3):392–405, 2012.



www.manaraa.com

90

VITA

Matthew Allen Martin grew up in Carthage, Missouri. He graduated from

Carthage Senior High School. From Fall of 2009 to Spring of 2013, he attended

Missouri University of Science and Technology to earn a Bachelor of Science degree

in Computer Science. In the summer of 2010 Matthew worked for Sandia National

Laboratories as a technical intern at their Livermore, California location. In the

summers of 2011 and 2012, Matthew worked for Sandia National Laboratories at

their Albuquerque, New Mexico location in the Center for Analysis Systems and

Applications internship program. He was then accepted into Sandia’s Critical Skills

Master’s Program that lasted from the Summer of 2013 to Spring of 2015 during

which he worked at Sandia in the summers. With funding from Sandia’s Critical

Skills Master’s Program, Matthew earned his Master of Science degree in Computer

Science from Missouri University of Science and Technology in August of 2015 and

performed the research upon which the three papers in this thesis were based.


	Hyper-heuristics for the automated design of black-box search algorithms
	Recommended Citation

	PUBLICATION THESIS OPTION
	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	I. Evolving Black-Box Search Algorithms Employing Genetic Programming
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	PARSE TREE
	Selection Operation Nodes
	Variation Operation Nodes
	Set Operation Nodes
	Other Nodes

	META-ALGORITHM
	Black-Box Search Algorithm
	External Verification


	EXPERIMENTS
	RESULTS
	DISCUSSION
	CONCLUSIONS
	FUTURE WORK

	II. A Problem Configuration Study of the Robustness of a Black-Box Search Algorithm Hyper-Heuristic
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	PARSE TREE
	NODES
	Selection Operation Nodes
	Variation Operation Nodes
	Set Operation Nodes
	Terminal Nodes
	Utility Nodes

	META-ALGORITHM
	Black-Box Search Algorithm
	Multi-Sampling
	External Verification


	EXPERIMENTS
	RESULTS
	DISCUSSION
	CONCLUSIONS
	FUTURE WORK

	III. Hyper-Heuristics: A Study On Increasing Primitive-Space
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	PARSE TREE
	NODES
	Typing
	Selection Nodes
	Variation Nodes
	Utility Nodes
	Set-Manipulation Nodes
	Terminal Nodes

	META-ALGORITHM
	Black-Box Search Algorithm

	EXTERNAL VERIFICATION

	EXPERIMENTS
	RESULTS
	DISCUSSION
	CONCLUSIONS
	FUTURE WORK

	CONCLUSIONS
	LIMITATIONS
	FUTURE WORK

	BIBLIOGRAPHY
	VITA

